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Motivating Questions

Surface wave (SW) groups drive a deep circulation which we call the Eulerian return
flow. In the presence of stable stratification, the Eulerian return flow sets isopycnals into
motion, generating an internal wave (IW) wake. This sets up a system in which SWs are
an energy source, and IWs are an energy sink, leading us to ask:

1 Do the radiated IWs appreciably dampen SW groups?
2 Is the energy supplied by SWs a significant source for IW generation relative to other
sources in the ocean?

Introduction to Surface Wave Groups
Surface gravity waves induce a Lagrangian
mean flow that is commonly known as
Stokes drift. If the surf wave (SW)
amplitude varies in time and space, as is
the case with groups, so does the amplitude
of the Stokes drift. Surface wave solutions
are found by assuming small wave slopes
(ε = amaxk) to linearize and solve the
Boussineq equations

ut + u · ∇u +∇p = bẑ , (1)
bt + u · ∇b + wN 2 = 0 , (2)

∇·u = 0 . (3)
From the O(ε1) solutions for velocity
u1 = (u1, v1, w1) and displacement
ξ1 = (ξ1, η1, ζ1), we can compute the O(ε2)
Stokes drift
uS def= ξ1 · ∇u1 = c k2|a(x, y, t)|2e2kz . (4)

The mean wave momentum, M , per unit
area is defined as

M(x, y, t) def=u1ζ1
∣∣∣0

=1
2ck |a|

2 =
∫ 0

−∞
uS dz . (5)
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Figure 1: Numerical computation of the displacement
of three example particles beneath a SW group (dots).
Darker dots indicate later times, with equal spacing
in time. The solid line indicates the time integrated
Stokes drift which is a second order approximation to
the numerical solution.
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Figure 2: Eulerian return flow in an unstratified ocean.

Convergence and divergence inM drives water downward ahead of the group, and lifts it in
the rear. We call this forcing “Stokes pumping,” and it sets the surface boundary condition
on vertical velocity.

at z = 0: w̄2 ≈Mx . (6)

Scales of Interest
•SW amplitude amax ∼ 1m
•SW wavenumber k ∼ 2π

100m
•SW period T ∼ 8s
•SW phase speed c ∼ 12.5ms−1

•SW group length `x ∼ 250m
•SW group width `y ∼ 3`x
•Depth d ∼ 2000m
•Buoyancy frequency N ∼ 2π

2000s
• IW z-wavenumber mn = nπ

d

• IW y-wavenumber s ∼ q
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`� SW group width ⇠ 350m

c � SW phase speed ⇠ 12.5ms�1

q � IW wavenumber ⇠ 2⇡/(6.7km)

v � IW phase speed in 2D =
c

2| {z }
2D resonance condition

⇠ 6.25ms�1

SW � Surface Waves

IW � Internal Waves

a⇤ � SW amplitude ⇠ 2m

k � SW wavenumber ⇠ 2⇡/(100m)

`� SW group width ⇠ 350m

amax

`x

Stra0fied)

• IW x-wavenumber q ∼ qmax = 2N
c = 2π

12.5km

Resonance and Internal Wave Radiation
Combining (1)-(3) and performing a phase
average ( · ) over the SW timescale we
find an O(ε2) equation for the vertical
velocity of IWs

[
∂2
t∇2 + N 2 (∂2

x + ∂2
y

)]
w̄2 = 0 . (7)

To solve (7) we project onto n vertical
modes and Fourier transform (̂·) in the
horizontal to find

ŵn =−
√

2mn

d
iqM̂(q, s)

(|q|2 + m2
n)−

(
qmax
q

)2
|q|2

, (8)

where q = (q, s). The inverse Fourier
transform of (8) gives the vertical velocity
of the IW wake plotted in figure 3.

Resonance occurs, and IWs are radiated,
when the denominator of (8) vanishes
giving us the resonance condition

c

2
︸︷︷︸

SW group speed

= N

q

√√√√√
q2 + s2

q2 + s2 + m2
n︸ ︷︷ ︸

IW phase speed in x-direction

. (9)

From the resonance condition we can
deduce the widest possible wake angle

max
∀(q,s)

(sin θn) = 2N
cmn

= 2Nd
nπc

, (10)

as depicted in figure 4

Figure 3: Common logarithm of the vertical velocity
w̄2. Dashed contours indicate negative values.
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Figure 4: Schematic of the IW wake. In the frame
moving with the SW group, the surrounding water
rushes backward at the SW group speed c/2.

Energy Flux from SW to IW

To compute the energy transfer from SWs to IWs we compute the vertical energy flux
through the surface

J =
∞∑

n=1

∫∫ ∞
−∞
Mx$n

∣∣∣0 dxdy
︸ ︷︷ ︸

def=Jn

. (11)

In (11) we have replaced w̄2 with the boundary condition (6), and $n|0 the pressure for the
nth mode at the surface can be computed by eliminating the buoyancy from (1) and (2) and
then using (8).

Energy Flux Scale Dependence

Exact Jn = −c
2

1√
2πd

∫ qmax

0
q2 ∣∣∣M̂

(
q, sn(q)

)∣∣∣
2
√√√√√

q2
max − q2

m2
n − q2

max + q2 dq (12)

If SWs are fast, stratification is weak, and groups are wider than long.

J ≈ J1 ≈ −
32
√

2π5

g3
(Namax)4

T 5 (`x`y)2
∫ 1

0
q2 exp


− q2

∗
1− q2

∗

(mn`y)2

2



√

1− q2
∗ dq∗ (13)

If SWs are fast, stratification is weak, and groups are wider than the depth

J ≈ −32π5/2

g3
d3 (Namax)4 `2

x

T 5`y

∞∑

n=1

1
n3

︸ ︷︷ ︸
≈1.2

(14)

Wave Group Examples

To see this effect we examine a SW group with Gaussian amplitude modulation

a = amax exp

−

(
x− c

2t
)2

2`2
x

− y2

2`2
y


 , (15)

Figure 5 shows how the energy flux is
distributed across different IW
wavenumbers. The majority of the energy
goes into near-N internal waves, and into
the first vertical mode n = 1.
Table 1 shows that for typical and even
extreme SW forcing, the radiation of IWs
does not appreciably dampen the SWs. In
general this mechanism is also a very weak
source of energy for IWs. Pinkel (1975)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-3

-2

-1

0
10

-4

n=1

n=2

n=3

Figure 5: Energy flux spectral density for a Gaussian
wave group (15). The first three modes are plotted.
The solid lines are the exact solution (12), and the
dashed lines are the approximate solution (13).

observed a near-N spectral peak of IW energy. Comparing the energy flux from the extreme
forcing case to the energy contained in this spectral peak suggests that extreme SW forcing
over a period of one day would generate the observed amount of energy in the near-N
spectral peak.

Table 1: Parameters for typical and extreme forcing, and results for the energy flux computed using (12).

Parameter Typical Forcing Extreme Forcing
wavenumber k 2π/(100 m) 2π/(625 m)
wave amplitude amax 1m 4m

group length `x = πnSW/k 250 m 1.56 km
group width `y 3`x = 750 m 3`x = 4.69 km

buoyancy frequency N 2π/(2000 s) 2π/(1333 s)
qmax = 2N/c 2π/(12.5 km) 2π/(20.8 km)
Energy flux J 0.2W 100W
Half-life of SW many years many years

Time to force near-N spectral peak 500 days 1 day

Conclusions

•Stokes pumping heaves isopycnals below, causing the radiation of IWs.
•Radiated IWs have frequencies near N and a maximum wavenumber determined by the
speed of the SW group and the stratification.

•For IWs to radiate, the IW phase speed in x-direction must match the SW group speed.
•The energy flux from SWs to IWs depends strongly on the SW amplitude and period,
and the stratification [see (12)-(14)]

•Radiated IWs do not appreciably dampen SWs and SWs are a weak source of IW energy.
•Extreme SW forcing over a period of one day is strong enough to account for the
observed spectral peak near the buoyancy frequency.
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