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Abstract

Instabilities in a stratified ocean mixed layer model with surface gravity wave forcing are examined to study the

interactions between the surface gravity wave scale and the submesoscale. Linear instabilities at these two The perturbation equations are solved numerically using Chebyshev spectral modes. Figure 1 shows the growth rates (o) u=0 w=1 u=2
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The effect of the wave forcing is captured by considering the Boussinesq, wave-filtered, inviscid Craik-Leibovich k k k ' _I-E
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It is expected that there will be significant horizontal and time scale separation, thus motivating the horizontal ' Amplitude Amplitude Amplitude Amplitude Amplitude
variations to be non-dimensionalized by two different scales (I and L, with | ~ Ro L) with associated advective 15 Fig. 1 shows that the most unstable mode quickly becomes high wavenumber as wave forcing is increased . _ ' o ’ _ o
timescales (t and T). The wave field (thus Stokes drift) will be considered invariant horizontally, and in time. ' L . ) ) : ’ Figure 4. Vertical structure of the perturbation u’, v/, and b’ corresponding to the growth rates shown in Fig. 3.
. , ) however, it is clear from fig. 3 that this does not mean that the geostrophic mode is gone, but rather sub- The upper row corresbonds to the seostrophic mode. and the lower row corresponds to the wave mode
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. . dominant. It is also clear that the geostrophic mode is weakly modulated by the wave forcing.
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As the wave forcing increases the geostrophic and symmetric modes are overshadowed by instabilities at high
wavenumber. This is unlike the transition to Kelvin Helmholtz instability in that increasing Ri without Stokes drift results in 0.6- ] I~/ SN N S .
Assuming these scalings, the flow is decomposed into average and perturbation terms. The averaged terms a stronger symmetric instability (high |, low k). The Stokes drift does increase the Eulerian Ri, however the Lagrangian Ri - "—1-05 0 0.5 1 -1-05 0 0.5 1 -1-05 0 0.5 1 "-1-05 0 0.5 1

represent the large scale background flow, with the small horizontal space and fast time scales (x,y,t) averaged  (which is listed) is unchanged in the presence of Stokes drift. Therefore, the high wavenumber instabilities shown are
over. u’, v.,w’ ~ O(Ro) and b’, i’ ~ O(Ro?). The buoyancy and pressure scale with Ro? so that the small scale  expected to be due to the Stokes vortex terms in the perturbation equations.
pressure perturbations scale with u’?, unlike the large scale pressure which is scaled in expectation of near
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thermal wind balance. Averaging the equations over the small scales and assuming Ro << 1 gives the O(1) 04+ i 0
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It the background buoyancy is assumed to_be time m;/arlant, ar12d an initial condition on buoyancy is u=0max =0.24 Figure 5. Growth rates vs i for the two most unstable modes for k=0, | =15, Ri=0.9, a = 0.006, Ro = 0.01, Al.nplituc.je A;nplituéle A|.‘nplituéle Allnplitm.:le A[.nplitu(.je
B |0 = M Y T N < | ' 20 0.6 0 =n/4. Figure 6. Vertical structure of the perturbation u’, v/, and b’ corresponding to the growth rates shown in Fig. 5.
where M? and N? are constants, then the flow is in hydrostatic, geostrophic balance with the Lagrangian 15 | ' The upper row corresponds to the symmetric mode, and the lower row corresponds to the wave mode.
velocity, or “Lagrangian Thermal Wind Balance.” Therefore, the Lagrangian background flow is unaffected by
;hekprezepfig OfEtOkeS dr'tf;t' Despite thITI’ 'tdW'” b.e shoyv: ;hat ;c]he S_ar:ne ';' not truel of ;he per;c]urbed ﬂtc))w. Tlhoe - 10 The vertical structure of each mode shows that the geostrophic mode (fig. 4, upper row) is significantly influenced by the strongly surface intensified Stokes drift, suggesting that the geostrophic mode becomes a mixed mode
to (.es ! |.shc gsen to_ e exponentially decaying with depth, with a decay scale chosen here to be H/10, - 105 at modest wave forcing. The wave mode (fig. 4, lower row) shows significant vertical structure near the surface, and very little at depth. This is just what one would expect from a mode generated by the surface intensified
consistent with observations. 5 Stokes drift. The vertical structure of the wave mode at k =0, | = 15 is quite different, with significant vertical structure at both the top and bottom.
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Subtracting the balanced background flow from the full equation set gives the perturbation equations. 0 = 57/4 max= 0.75 6 = 67/4 max= 0.93 0 = 77/4 max= 1.68

Assuming o’ << Ro, and posing a normal mode anzatz, 20 ; ;
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5
00 2 4 * Future work aims to further characterize the effects of wave forcing on the geostrophic and symmetric instabilities.
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u'(x,y,z,t)=u(z)e
and similarly for v/, w’, b’, and 1, the perturbation equations become,
04 ~ k  Long term goals include adding a surface wind stress so that the limit of Craik-Leibovich instability can be reached.
_MU U, _MVV +—[lO’+lk(U+ MU )] -b+ T, = 0  The linear stability results discussed here are intended to guide numerical simulations of the full Boussinesq Craik-Leibovich equations, where the most interesting

(i +ikU )it (ikpV, +1) 5+ U+ ik =0
Ro regions of the Ri, a, Ro, u, and B parameter space (as determined by the linear stability analysis) will be examined.
Figure 2. Maximum growth rate Im(o) for Ri=0.9, a =0.006, Ro =0.01, u =1, and the indicated 6. Each panel is normalized

(1—leU)u+[zc7+zk(U+uU)+le] +Vw+ilr =0
—V + RlW + [lO + lk (U + MU )] b to the maximum growth rate for that value of 8. The location of the panels corresponds to the direction of the Stokes drift
O (e.g. 8 = /4 is the upper right panel).

* Inthe Ro << 1 limit with constant vertical and horizontal stratification, the Lagrangian background flow is unaffected by the wave forcing. The result is thermal wind
balance of the Lagrangian flow. The same is not true of general fronts and filaments in the presence of wave forcing (McWilliams and Fox-Kemper, 2012).

 Although the Lagrangian background flow is unaffected by the wave forcing, the O(Ro) perturbation to the O(1) background flow shows significant influence of the
Stokes vortex force in the perturbation momentum equations.

 The growth rate shows significant sensitivity to wave forcing and wave direction with high wavenumber instabilities dominating flow with high wave forcing.

 The geostrophic mode is weakly modulated at low wave forcing, and becomes a mixed geostrophic-wave mode at moderate wave forcing.

* The symmetric mode is quickly damped at low wave forcing.
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iku+ilv+w_ =0

In the case of no wave forcing (1 = 0) the background and perturbation equations are identically the baroclinic,



