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ABSTRACT

Here, the effects of surface waves on submesoscale instabilities are studied through analytical and linear

analyses as well as nonlinear large-eddy simulations of the wave-averaged Boussinesq equations. The wave

averaging yields a surface-intensified current (Stokes drift) that advects momentum, adds to the total Coriolis

force, and induces a Stokes shear force. The Stokes–Coriolis force alters the geostrophically balanced flow by

reducing the burden on the Eulerian–Coriolis force to prop up the front, thereby potentially inciting an anti-

Stokes Eulerian shear, while maintaining the Lagrangian (Eulerian plus Stokes) shear. Since the Lagrangian

shear is maintained, the Charney–Stern–Pedlosky criteria for quasigeostrophic (QG) baroclinic instability are

unchanged with the appropriate Lagrangian interpretation of the shear and QG potential vorticity. While the

Stokes drift does not directly affect vorticity, the anti-Stokes Eulerian shear contributes to the Ertel potential

vorticity (PV). When the Stokes shear and geostrophic shear are aligned (antialigned), the PV is more (less)

cyclonic. If the Stokes-modified PV is anticyclonic, the flow is unstable to symmetric instabilities (SI). Stokes

drift also weakly impacts SI through the Stokes shear force.When the Stokes andEulerian shears are the same

(opposite) sign, the Stokes shear force does positive (negative) work on the flow associated with SI. Stokes

drift also allows SI to extract more potential energy from the front, providing an indirect mechanism for

Stokes-induced restratification.

1. Introduction

Submesoscale fronts in the ocean mixed layer are

strong horizontal buoyancy gradients (by [ M2) that

rival the weak vertical stratification (bz [ N2). Geo-

strophic balance implies a geostrophic Richardson

number Rig [ (N2f 2)/M4 ;O(1) (Tandon and Garrett

1994) that depends on the vertical stratification and

geostrophic shear M2/f (where f is the Coriolis fre-

quency). It is the O(1) Richardson number and Rossby

number (Ro [ U/fL; U is the flow velocity, and L is a

characteristic length scale) that distinguish the sub-

mesoscale from larger-scale motions.

The balance struck between turbulent mixing and

restratification processes, such as geostrophic ad-

justment, restratifying instabilities, and penetrating

solar heating, is very important for organisms that live

in the mixed layer. Frontal instabilities that drive

restratification are able to compete with destabilizing
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surface forcing in winter and enhance phytoplankton

blooms (e.g., Taylor and Ferrari 2011; Mahadevan

et al. 2012).

In addition to Ri ; O(1), submesoscale fronts also

have Ro ; O(1). A large Ro implies that the ageo-

strophic velocity is significant in themomentumbalance.

Capet et al. (2008) show that the ageostrophic compo-

nent of the velocity enables a forward cascade of energy,

toward the dissipation scale, rather than geostrophic

turbulence, which has an inverse energy cascade.

Molemaker et al. (2010) show that submesoscale front-

ogenesis and instability leads to a forward energy

cascade.

These submesoscale flows are typically restricted to

themixed layer of the ocean because strong forcing from

wind and strain by mesoscale features creates fast flows

over short length scales [where Ro;O(1)]. Convection

and wind also make the near-surface stratification very

weak (Ri & 1). Since submesoscale flows occur at the

upper boundary layer, they coexist with wind and wave

forcing.

Despite having a partially geostrophically balanced

state, these fronts will have shear and are still unstable.

The seminal works of Stone (1966, 1970, 1971) showed

that geostrophically balanced fronts with constant ver-

tical and horizontal stratification, and with Rig ; O(1),

have three possibly unstable modes: geostrophic in-

stabilities (GI1), symmetric instabilities (SI), and

Kelvin–Helmholtz instabilities (KHI). Criteria for all of

the instabilities discussed by Stone (1971) have been

established for fronts in the absence of wave forcing.

Charney and Stern (1962) and Pedlosky (1964) de-

veloped criteria for quasigeostrophic (QG) baroclinic

instability that depend on the QG potential vorticity

(QGPV) and the shear. Although these criteria were

derived for QG baroclinic instability (e.g., Eady 1949),

the instabilities (GI) that grow into finite-amplitude

mixed layer eddies (MLEs) are very similar in growth

rate, wavenumber, and vertical structure (Boccaletti

et al. 2007). Stone (1966, 1970, 1971) showed that SI only

occur when Rig, 1; however, Rig is based strictly on the

geostrophic shear. Hoskins (1974) proved a more gen-

eral result that SI occur only if the Ertel potential

vorticity (PV; the absolute vorticity dotted into the

buoyancy gradient) is the opposite sign of f. None

of these criteria, however, account for the effects of

surface gravity waves on the fronts or the instabilities

themselves.

The leading-order influence of surface gravity

waves (waves hereinafter) on the flow can be

addressed by considering the wave-averaged Boussi-

nesq (WAB) equations (Craik and Leibovich 1976;

Huang 1979; McWilliams et al. 1997, 2004). The WAB

equations incorporate the Stokes drift (a wave-averaged,

surface-intensified current) into the momentum equation

through the Stokes–Coriolis (Huang 1979) and Stokes

shear forces (the combination of the Stokes vortex

force and the Stokes-induced perturbation of the

Bernoulli effect; N. Suzuki and B. Fox-Kemper 2015,

unpublished manuscript). Stokes drift also aids in the

advection of momentum, but the Stokes drift itself is

not advected. The Stokes shear force is the primary

driver of Langmuir cell instabilities (LC; e.g., Craik

1977); however, here modifications to other baro-

clinic instabilities by Stokes drift are of the greatest

interest.

None of the instabilities mentioned above, or the

finite-amplitude features that they grow into, are re-

solved in global climate models (GCMs). With the

finest-scale GCM simulations at ’0.18 (’10 km) reso-

lution, even large MLEs O(10) km are not resolved.

However, the mean effect of MLEs (finite-amplitude

GI) has been parameterized for use in GCMs (Fox-

Kemper et al. 2011). Since GI extract potential energy

from the front (e.g., Haine and Marshall 1998), the net

effect of the MLE parameterization is to increase the

vertical stratification in the mixed layer. To date, how-

ever, no such parameterization has been made for the

mean effect of SI. A few parameterizations for LC have

been proposed (McWilliams and Sullivan 2000; Smyth

et al. 2002; Van Roekel et al. 2012) and implemented in

GCMs (Fan and Griffies 2014; Li et al. 2015), all forced

by Stokes drift with the net effect of reducing the vertical

stratification in the upper ocean. These parameteriza-

tions are independent from each other in that the fronts

are not accounted for in the LC parameterization, and

Stokes drift is not accounted for in the MLE parame-

terization. This independence implies that the net ef-

fects are additive, and any changes to the MLEs due to

Stokes drift or changes to LC due to fronts are

unaccounted for.

McWilliams and Fox-Kemper (2013) showed that

when an initially geostrophically balanced front is en-

countered by waves (represented as Stokes drift), the

Stokes–Coriolis and Stokes shear forces disrupt the

geostrophic balance, forcing the front to adjust. For a

1 In this work, geostrophic instabilities will refer to instabilities

roughly the size of the deformation radius, which need not be

strictly geostrophic and are primarily driven by the potential en-

ergy in a front. Geostrophic instabilities are often referred to as

baroclinic instabilities; however, because symmetric instabilities

are also formally baroclinic, the term geostrophic is preferred here

because of their similarities with quasigeostrophic baroclinic in-

stabilities. Furthermore, throughout this work baroclinic in-

stabilities will refer to both symmetric and geostrophic instabilities.
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front with Ro5 0, the adjustment results in an Eulerian,

anti-Stokes flow that directly opposes the Stokes drift to

balance the Stokes–Coriolis force. For a front with finite

Ro (which will not be considered by the linear solutions

to follow), the Stokes shear force also alters the hydro-

static balance of the front.

Ursell and Deacon (1950) showed that a canceling

Eulerian mean flow arises (anti-Stokes flow) in the

presence of the Stokes–Coriolis force. Broström et al.

(2014) confirms this anti-Stokes flow and shows that the

Stokes–Coriolis force does not inject energy into the

mixed layer when considering the vertically integrated

momentum and energy equations. McWilliams et al.

(2012, 2014) confirmed in nonlinear large-eddy simu-

lations (LES) with Stokes drift and wind forcing that

anti-Stokes Eulerian flow is maintained by the leading-

order geostrophic and Ekman balance. In simulations

of submesoscale fronts with Stokes drift and wind

forcing, Hamlington et al. (2014) showed evidence of

the anti-Stokes flow from altered PV compared to a

simulation without Stokes drift. Anti-Stokes flow has

been observed and shown to be important for flows

across the inner continental shelf (Lentz et al. 2008;

Lentz and Fewings 2012). Fronts in the presence of

Stokes drift with constant shear are unstable to a hybrid

SI/LC mode (Li et al. 2012). Notably, unlike SI in the

absence of Stokes drift, this mode extracts potential

energy from the front, thereby restratifying rather than

mixing it.

Since the stability criteria for SI and GI depend on the

strength of the shear, these criteria are expected to

change as the Stokes drift itself vertically varies and also

induces the anti-Stokes Eulerian shear. The implications

of these effects are of primary interest here, and care is

required as Stokes drift does not directly contribute to

the vorticity in the wave-averaged equations. Nakamura

(1988) showed that although GI and QG baroclinic in-

stability are similar, GI has a reduced wavenumber and

growth rate compared to QG baroclinic instability be-

cause small Ri fronts have stronger shear.

Surface wind stress induces shear and, in the presence

of a front, a frictional PV flux out of (into) the ocean

when the winds blow downfront (upfront) (Thomas

2005; downfront implies the wind and geostrophic shear

are aligned), which can then induce (suppress) SI.

Thomas and Taylor (2010) refer to this driving of SI by

wind as forced symmetric instability (FSI) and show that

it scales with the Ekman buoyancy flux (EBF; the dot

product of the Ekman transport with the horizontal

buoyancy gradient). Regions of higher than expected

turbulent kinetic energy were observed in the Kuroshio,

where the EBF (but not necessarily the wind stress) was

large (D’Asaro et al. 2011), suggesting that FSIs were

present. Here, a related effect will be studied under

downfront (upfront) Stokes drift conditions.

Although the introduction of Stokes drift within a

front allows for a new class of instability (LC), the focus

of this work is on modifications to baroclinic in-

stabilities (GI and SI) by Stokes drift. With the in-

creased shear due to Stokes drift, how do the criteria

for GI and SI change? Which shear—Eulerian, Stokes,

or Lagrangian—is relevant for these criteria? How

does the Stokes drift influence the PV and thereby

trigger or suppress SI? Is the Stokes–Coriolis or Stokes

shear force more important for changes to baroclinic

instabilities? These questions will be answered in the

next several sections.

First, the problem of interacting waves and fronts is

described in detail (section 2). Section 3 provides ana-

lytically derived stability criteria for SI and GI in ide-

alized settings. The analytic stability criteria are

confirmed in more complicated settings with numerical

linear stability analysis in section 4. The linear analyses

are complemented with nonlinear LES in section 5. The

conclusions are discussed in section 6.

2. Problem description

To incorporate the interaction between waves and

currents, the WAB equations (Craik and Leibovich

1976; Huang 1979; McWilliams et al. 1997, 2004) are

used:

›
t
u1 (uL � =)u1 f k̂3 uL

1=p1 uL,j=uS,j 2 bk̂2 n=2u5 0, (1)

›
t
b1 (uL � =)b2 k=2b5 0, and (2)

= � u5 0, (3)

where u is the three-dimensional, Eulerian velocity, uS is

the Stokes drift, uL[ u1 uS is the Lagrangian velocity, f

is the Coriolis parameter, p is the pressure divided by a

reference density, b is the buoyancy, n is the kinematic

viscosity, and k is the thermal diffusivity. The term uL,j

refers to the jth component of the Lagrangian velocity,

and, as usual with Einstein notation, the repeated j index

implies a summation over the three spatial components.

The Stokes shear force uL,j=uS,j form of the wave-

averaged equations has been chosen here rather than

the Stokes vortex force form. These forms are mathe-

matically equivalent. This choice is made because when

the Stokes drift is horizontally invariant (which will be

assumed) the Stokes shear force only appears in the

vertical momentum equation as uL � uS
z . Then the effects

of Stokes drift are the Stokes–Coriolis force and a ver-

tical force that varies horizontally with the Eulerian
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mean flow. It is this horizontally varying vertical force

that induces the upwelling and downwelling branches of

LC. N. Suzuki and B. Fox-Kemper (2015, unpublished

manuscript) examine the Stokes shear force in detail and

show that this form is equivalent to other forms of the

wave-averaged equations.

In the open ocean, Stokes drift has a relatively per-

sistent character, which justifies the assumption of time

and horizontally invariant wave forcing. Wave buoy

data at Ocean Station Papa (508N, 1458W; sampled ev-

ery 30min for 2 yr; Thomson et al. 2013) reveals an au-

tocorrelation of the Stokes drift on relatively long time

scales compared to the growth rates of instabilities

considered here, which areO(1) day or less. The surface

Stokes drift autocorrelation zero crossing time varies

from 9 to 15 days for each vector component, while the

integral time scale ranges from 287 to 290 days.2 Similar

estimates result from the WAVEWATCH model

(Tolman 2009; sampled every 3 h for 1 yr; over the entire

ocean, 95% of the zero crossing times are 1.75 days or

greater, with an integral time scale of 40 days or greater)

are comparable to those of the wind stresses used to

drive the wave model (Large and Yeager 2009).

The Stokes drift throughout this work is also assumed

to be monochromatic, resulting in a simple exponential

profile:

US(z)5USj
z50

exp(z/HS) , (4)

whereHS [ (2kw)
21 is the e-folding depth of the Stokes

drift relating to the wavenumber kw of the waves. A

linear Stokes drift profile is considered in section 3c for

analytic convenience.

The vorticity equation can be used in place of the

momentum equation

›
t
v1 uL � =(v1 f k̂)2 (v1 f k̂) � =uL

2=b3 k̂2 n=2v5 0, (5)

where v[=3 u is the (Eulerian) vorticity. Rescaling

the momentum equation as in McWilliams (1985), and

the Stokes shear term as inMcWilliams and Fox-Kemper

(2013), gives the dimensionless momentum equation:

Ro[›
t
u1 (uL � =)u1Eu(=p2bk̂)]1 k̂3 uL

1mlRouL,j=uS,j 2Ek=2u5 0, (6)

where Ro [ UL/( fH), Eu [ max(1, Ro21) is the Euler

number [p/(rU2)], m[ (US/UL)jz50, l [ H/HS, and H is

the mixed layer depth (see Table 2 below). Note that

whenRo, 1, thenmlRo is the parameter that compares

the Stokes shear force to the buoyancy. This is the small

parameter exploited asymptotically by McWilliams and

Fox-Kemper (2013).

Scaling the equations

To linearize the equations, several assumptions are

made to achieve a steady mean state around which to

perturb. In dimensional form, we have the following:

d multiple scales of horizontal variation [i.e., b›x /
(1/l)›x 1 (1/L)›X , l � L, and similarly for ›̂y]. There

is only one scale for vertical variation and it is different

from the horizontal scales [b›z / (1/H)›z].
d The assumption of multiple horizontal scales allows

for fast and slow time scales [i.e., b›t / (U/l)›t 1
(U/L)›T ]

d Each variable is decomposed into a mean and pertur-

bation (e.g., u 5 U 1 u0). The averaging operator is

(�)5 (U/l3)
Ð tÐ xÐ y

dx dy dt (an average over the small

horizontal scales and the fast time scales). For ex-

ample, u(x, X, y, Y, z, t, T)5U(X, Y, z, T), where

u0(x, y, z, t)5 0, and U[U.

The scales above are all chosen based on realistic

quantities for the ocean mixed layer. Scales for vertical

velocity, buoyancy, and pressure are derived therefrom

(see Table 1). The nondimensional numbers, which de-

termine the regime and stability of the problem, are

given in Table 2. The complete, rescaled, dimension-

less equations are given in the appendix, without

approximation.

The complete equation set collapses to several pre-

vious linear stability problems that are relevant for

ocean dynamics including QG baroclinic instability

(Eady 1949), ageostrophic, nonhydrostatic baroclinic

instability (Stone 1971), LC instabilities (Leibovich and

Paolucci 1981), LC instabilities in an Ekman layer

(Gnanadesikan and Weller 1995), and downwave in-

variant mixed LC/SI instabilities (Li et al. 2012). The

complete validation of the present model with respect to

the studies above is described in detail in Haney (2015).

The combination of the nondimensional parameters

required to collapse to each of these regimes is sum-

marized in Table 3.

Although Eqs. (A1)–(A4) can reproduce all the

above instabilities as well as those in the parameter

space between these disparate regimes, the focus of this

work will be the modification to balanced and un-

balanced baroclinic instabilities (GI and SI) by the

Stokes–Coriolis and Stokes shear forces. As such,

2 The subsurface Stokes drift autocorrelation times were found

to vary with depths examined (down to 9m depth). In general, the

zero crossing and zero sum times increased and decreased with

depth, respectively, with a 70-day minimum for the latter.
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inviscid flow will be assumed in the analytic and linear

calculations to follow, and a discussion of instabilities

in the presence of viscosity will be deferred to sub-

sequent papers.

3. Analytic stability criteria

In a few special cases of fronts in the Lagrangian

thermal wind balance (Ek 5 0), analytic criteria for GI,

SI, and KHI can be derived. A review of what is meant

by Lagrangian thermal wind balance is therefore

helpful.

McWilliams and Fox-Kemper (2013) showed that a

front or filament undergoes an adjustment to accom-

modate the Stokes–Coriolis and Stokes shear forces.

The Stokes shear force alters the vertical momentum

equation [Eq. (6)] and scales as ml (relative to the

advection term), whereas the vertical pressure gradient

and buoyancy forces scale as Ro21 when Ro � 1, and

therefore Eu ; Ro21 [see Eq. (A2)]. Therefore, when

Ro21 � ml [i.e., mlRo[ «� 1 in McWilliams and Fox-

Kemper (2013)], the Stokes shear force can be neglected.

Then the only adjustment required in the horizontal

momentum equation is to balance the Lagrangian–

Coriolis force with the horizontal pressure gradient.

Anti-Stokes Eulerian flow (McWilliams and Fox-Kemper

2013) arises because in the absence of any pressure

gradient (in small Ro, inviscid flow), the Stokes and

Eulerian–Coriolis forces must exactly balance:

f k̂3U52f k̂3US . (7)

With a front, and with the assumption that the Stokes

shear force is weak (ml � Ro21), then the vertical

momentum balance is hydrostatic; one can write the

thermal wind balance as

TABLE 1. The scalings for the dimensional variables and their typical values in the ocean mixed layer are shown. The buoyancy

frequencyN2 is consistent with those reported in Boccaletti et al. (2007). The surface Stokes drift magnitude jUs(0)j is consistent with that

reported in Webb and Fox-Kemper (2011).

Dimensional variable Symbol Scaling Typical value

Coriolis parameter f f 8.34 3 1025 s21

Vertical buoyancy gradient Bz N2 6.96 3 1027 s22

Lateral buoyancy gradient By M2 6.96 3 1028 s22

Vertical length scale ›21
z H 50m

Large horizontal length scale ›21
X L 5 km

Small horizontal length scale ›21
x l 50m

Horizontal velocity u, y UL [ jU 1 USjz50 0.06m s21

Stokes drift US, VS jU 1 USjz50 0.05m s21

Stokes depth HS HS 1–10m

Vertical velocity w (ULH)/l 0.06m s21

Pressure p (UL)2Eu 0.026m2 s22

Buoyancy b [(UL)2/H]Eu 0.007m s22

Kinematic viscosity n n 1026 m2 s21

Thermal diffusivity k k 1.4 3 1027 m2 s21

TABLE 2. Nondimensional numbers and their range of values that may be explored by this equation set as well as a typical range of

values in the mixed layer. Note that all nondimensional parameters involving a velocity contain the Lagrangian rather than Eulerian

velocity.

Nondimensional number Symbol Definition Possible range Typical range

Rossby number Ro UL/fL (0, ‘) [1022, 103]

Richardson number Ri N2H2/(UL)2 [0, ‘) [10210, 10]

Aspect ratio a H/L �1 [1025, 1022]

Stokes drift strength m US/UL [0, ‘) [0, 103]

Stokes depth l H/HS (0, ‘) [5, 50]

Front strength l Ug
z /U

L
z [ (M2H)/( fUL) [0, 1] [0, 1]

Scale separation d l/L ,1 [1024, 1)

Large-scale Euler number Eu max(1, Ro21) [1, ‘) [1, 100]

Small-scale Euler number Eu0 max(1, dRo21) [1, ‘) [1, 100]

Ekman number Ek n/fL2 [0, 1) [10215, 1025]

Prandtl number Pr n/k ;7 ;7
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UL
z 5

k̂3=
H
B

f
, or equivalently, (8)

U
z
1US

z 5
k̂3=

H
B

f
, which implies that , (9)

U
z
5

k̂3=
H
B

f
2US

z , (10)

where =H 5 (›X, ›Y, 0). The last term on the right-hand

side is the anti-Stokes Eulerian shear. In fronts with

Ro; 1 (ml;Ro21; which will not be considered here),

there is an additional perturbation to the buoyancy and

velocity beyond anti-Stokes flow (McWilliams and

Fox-Kemper 2013). Note that the Ro � 1 assumption

allows for linearized equations, but, as is common in

asymptotic theories, the hope is that the linear theory is

robust and applies even when this strict assumption is

not met. Notably, the conclusions of the linear theory

are tested and many are confirmed, with nonlinear

simulations in section 5 in which the simulated fronts

have Ro ; 1.

Therefore, in a balanced front with Stokes drift, the

Lagrangian shear can be determined by the buoyancy

gradient; however, the Eulerian shear will be dramati-

cally different due to the anti-Stokes Eulerian flow. It

will be shown in the next few sections that GI, SI, and

KHI have stability criteria that depend on the La-

grangian flow, Eulerian flow, or both. Note that the

frontal adjustment to the presence of waves cannot alter

the PV in the flow (except possibly by advection);

therefore, the anti-Stokes contribution to the PV only

maintains, fluid parcel by fluid parcel, the structure of

PV that was preexisting in the front before the arrival of

waves. Of course, diabatic and wind effects may also

affect the PV (Thomas 2005), and the winds will lead to

waves. For brevity, this paper neglects direct study of

viscid, diabatic dynamics. Even so, the connection be-

tween winds and waves is not local in space or time, and

the wave group velocity is significantly different from

the Stokes drift. Thus, waves may arrive and deliver

Stokes forces far from any winds or PV anomalies as-

sociated with their creation. Last, these changes to the

Eulerian flow only represent the changes in the mean

state, while the Stokes drift also directly affects

instabilities through the Stokes shear force (see sections

4–5).

a. Kelvin–Helmholtz instability

Holm (1996) showed that a sufficient criteria for KHI

(Ri , 1/4) holds true for the Lagrangian mean Richard-

son number and that a necessary criteria for KHI is that

there must be an inflection point in the Eulerian veloc-

ity. Vanneste (1993) showed that since the Eady back-

ground state used in Stone (1971) has no inflection point,

it is stable to KHI. The mean flows studied here do not

have inflection points, and therefore these criteria will

not be tested with linear stability. Nevertheless, it is

important to keep in mind that in any realistic mixed

layer, with a frictional boundary, an inflection point in

the Eulerian flow is likely to occur, and therefore flows

with a Lagrangian Ri , 1/4 will be unstable to KHI.

b. Geostrophic instability

Beginning from the WAB Eqs. (1)–(3), and

following a standard derivation of the QG equations

[e.g., Pedlosky 1982; or equivalently, assuming the QG

limit in Table 3 for Eqs. (A1)–(A4)], the Stokes-

modified QG equations are

Dq

Dt
5 0, where q5QL 1 q0 , (11)

QL 5=2
HC1bY1 ›

z

 
f 20
N2

CL
z

B
z

!
, and (12)

q0 5=2
hc

0 1 ›
z

 
f 20
N2

c0
z

B
z

!
, (13)

where D/Dt5 ›t 1 uh � =h, =h 5 (›x, ›y, 0), q is the

QGPV, b is the change in Coriolis frequency with lati-

tude, and CL is a Lagrangian streamfunction that

satisfies

U1US 52CL
y , such that U52C

y
, and (14)

V1VS 5CL
x 5 0. (15)

Note that Eq. (12) involves amixture of theEulerian and

Lagrangian streamfunctions. The Eulerian streamfunction

TABLE 3. Configuration to replicate the results of several previously explored flow regimes.

Regime Ro Ri ml a g Ek d

QG (Eady 1949) �1 �1 0 �1 1 0 Ro
ffiffiffiffiffiffi
Ri

p
Ageostrophic nonhydrostatic (Stone 1971) �1 O(1) 0 �1 1 0 Ro

LC (Leibovich and Paolucci 1981) �1 O(1022) O(1) �1 0 .0 a

Mixed LC/SI modes (Li et al. 2012) �1 O(1021) 0.5 �1 O(1021) .0 Ro21

Ekman layer LC (Gnanadesikan and Weller 1995) �1 0 O(1) �1 0 .0 Ro21
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appears in the relative vorticity. The Stokes drift only

influences the Lagrangian streamfunction that appears

in the vortex stretching of the buoyancy surfaces in a

(Lagrangian) thermal wind balance. Although CL
x 5 0,

VS 5 2V may be nonzero, so long as they are horizon-

tally invariant. The perturbation QGPV evolution is

given by

q0
t 2CL

Yq
0
x 1c0

xQ
L
Y 5 0, 2H, z, 0, and (16)

b0
t 2CL

Yb
0
x 1c0

xBY
5 0, z52H, 0 , (17)

where 2c0
y 5 u0 and c0

x 5 y0. The QG perturbations may

vary in any direction, and normal-mode form is assumed

for the alongfront (x) direction:

c0 5<[~c(y, z)eik(x2ct)] . (18)

The QGPV and buoyancy conservation (on the

boundaries) then become

(UL 2 c)

"
~c
yy
1 ›

z

 
f 20
N2

~c
z

B
z

!
2 k2~c

#
1QL

Y
~c5 0, 2H, z, 0, and (19)

(UL 2 c)~c
z
1UL

z
~c5 0 z52H, 0 . (20)

The energy equation is then formed by dotting ~c into

Eq. (19). Now, considering the imaginary part of the

volume-integrated energy equation,

c
i

ðy2
y1

ð0
2H

QL
Y

jUL 2 cj2j
~cj2 dz1

f 20
N2

UL
z

jUL 2 cj2j
~cj2

2664
3775
0

2H

8>><>>:
9>>=>>; dy5 0.

(21)

where ci is the imaginary part of the wave speed. Recall

from Eq. (18) that for GI to occur ci must be nonzero. If

ci 6¼ 0, then at least one of the following must be true

[with QL as given by Eq. (12)]:

1) QL
Y changes sign in the interior of the domain;

2) QL
Y is the opposite sign as UL

z at z 5 0;

3) QL
Y is the same sign as UL

z at z 5 2H;

4) UL
z has the same sign at z 5 2H and z 5 0.

Therefore, the criteria forGI are unchanged so long as

the QGPV and shear are appropriately interpreted in

their Lagrangian forms as in Eqs.(12), (14), and (15).

This implies that once the front reaches Lagrangian

thermal wind balance, the stability of the flow to GI is

unchanged, and therefore the Stokes drift appears to do

very little to alter GI. However, these are only stability

criteria that are founded on the Stokes-altered mean

state, and they do not give information about what

happens to GI under the influence of the perturbation

Stokes shear force. This will be explored in section 4.

c. Symmetric instability

An analytic criterion for SI can be derived by fol-

lowing the method of Hoskins (1974), which reveals that

the Ertel PV must take the opposite sign of f for SI to

occur. Assuming the mixed LC/SI limit in Table 3 for

Eqs. (A1)–(A4) and downfront invariance and taking

the curl of the velocity yields

v0
t 1US

z u
0
y 2 fu0

z 2 b0
y 5 0, (22)

u0
t 2 fc

z
2U

z
c0
y 5 0, (23)

b0
t 1M2c

z
2N2c0

y 5 0, and (24)

v0 1=2c0 5 0. (25)

Here, we will assume that the buoyancy gradients in the

front are constant in the horizontal (M2) and the ver-

tical (N2). This therefore implies that our mean flow,

which is in thermal wind balance, has constant

geostrophic shear M2/f. Eliminating v0, u0, and b0,
and assuming a normal-mode solution of the form

c; eisteik(y sinf1z cosf), yields�
s

cosf

�2

5 (N2 2US
zUz

)t2 2 ( fUS
z 1M2 2 fU

z
)t

1 f 2 1 i
U

zz

k cosf
, (26)

where t[ tanf. Up to this point, any Stokes drift profile

may be considered. To obtain stability criteria, the

equation is simplified by assuming a Stokes drift profile

with constant shear and thus neglecting the last term on

the right-hand side. For the exponential Stokes drift

profiles considered in the following sections, neglecting

this term is unjustified; nevertheless, the assumption is

made in order to obtain an analytic solution. For un-

stable modes, s2, 0, and since s2 is given by a quadratic

equation for t, it is sufficient to show that there exist two

distinct real roots of Eq. (26) such that 21 , t , 1. To

obtain real roots, the following [a positive discriminant

of Eq. (26)] must be true:

f 2(N2 2US
zUz

)2 (M2 1 fUS
z )

2 , 0. (27)

Thus, Hoskins’ original negative (or more precisely,

anticyclonic) PV criteria is obtained in Eq. (28), where

the anti-Stokes flow contributes to the PV (Q). Note that

the PV is multiplied by f to accommodate for either

hemisphere:
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fQ5 f 2N2 2M4|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
geostrophic fQ

2 fM2US
z|fflfflfflffl{zfflfflfflffl}

Stokes-modified fQ

, 0. (28)

Since the anti-Stokes Eulerian flow (2US
z ) has decoupled

the total Eulerian shear from the buoyancy gradient

(which, in the absence of ageostrophic Eulerian shear, is

related through thermalwindUz52BY/f), a criterion on

Richardson number for the onset of SI is inadequate.3 A

downfront Stokes shear (cosu. 0) is stabilizing, while an

upfront Stokes shear is destabilizing to SI. Recall that

downfront winds extract PV from the mixed layer

(Thomas 2005), reducing the stability to SI. Therefore,

in a front in Lagrangian thermal wind balance, when the

winds and waves are aligned, as is often the case (Webb

and Fox-Kemper 2015), Stokes shear results in PV of the

opposite sign to the PV that is being injected by winds.

Although the Stokes drift does not create PV like the

wind can, the presence of Stokes drift affects PV through

effects on the near-surface velocity and mixing. Such a

situation arises profoundly inHamlington et al. (2014). In

that case, two simulations were compared; one with wind

only and one with aligned winds and waves (Stokes drift)

pointed partially downfront. Both simulations included a

front and the same surface buoyancy flux (cooling). In the

case with Stokes drift, the PV in the front is significantly

more positive, as expected under Lagrangian thermal

wind balance. Furthermore, the mixed layer as measured

by a sharp change in PV was much deeper than the

temperature mixed layer in the wind-only case, suggest-

ing that SI were stronger in the no Stokes case but were

still less effective than Langmuir turbulence at mixing

away negative PV near the surface.

d. Parcel theory for symmetric instability

To supplement the analytic proof of the SI criterion in

section 3c, one can consider the change in potential and

kinetic energy when two parcels are switched along a

particular path. Haine and Marshall (1998, their ap-

pendix B) used parcel switching arguments to show that

for an inviscid (no wind) background flow in thermal

wind balance (no Stokes), the criterion for SI to exist

( fQ, 0) holds true. Following their methods identically,

the geostrophic shear can be replaced throughout with an

arbitrary Eulerian shear that is a sum of geostrophic

Ug
z [2M2/f and ageostrophic Eulerian Ua

z components.

The Eulerian shear is chosen because the curl of the

Stokes drift is absent from the wave-averaged vorticity

[Eq. (5)]. Physically, the Stokes drift cannot introduce

vorticity into the flow because it is a combination of ir-

rotational wave quantities. Vorticity is only introduced by

the imposed mean flow, which then interacts with the

waves such that thewave-averaged effect is an interaction

between the Stokes drift and the imposed mean vorticity.

A consequence of the absence of Stokes vorticity is that

the momentum concentration is Eulerian, as in Eq. (1), and

that apart from advection, the Stokes drift only acts on the

vertical momentum (through the Stokes shear force). Many

mathematically equivalent formsof theWABequations and

the momentum concentration are presented in N. Suzuki

and B. Fox-Kemper (2015, unpublished manuscript) and

Holm (1996). The form chosen here is consistent with ab-

solute Eulerianmomentum for a fluid parcel (m5 uE2 fy).

However, because of the anti-Stokes Eulerian components

of the background flow, the available kinetic energy and the

shapes of constant absolute Eulerian momentum surfaces

are changed by the presence of Stokes drift.

A schematic of parcel switching in a front in Lagrangian

thermal wind balance with downfront and upfront Stokes

drift is show in Figs. 1a and 1b, respectively. Below the

influence of the Stokes drift (below ’0.4), switching par-

cels along lines of constant absolute Eulerian momentum

or constant buoyancy is unstable since the momentum

perturbation is amplified. When switching along surfaces

of constant absolute Eulerian momentum, a positive ver-

tical velocity perturbation yields a positive buoyancy force,

thereby amplifying the positive vertical velocity. In the

case with downfront Stokes drift, the momentum surfaces

are altered near the surface so that switching along con-

stant buoyancy surfaces is stabilizing. Similarly, switching

parcels along constant momentum surfaces in this case

results in a stabilizing buoyancy force. The upfront

Stokes drift case remains unstable, but none of the cases

in the schematic show how unstable these scenarios are.

Nevertheless, the instability clearly depends on gradi-

ents of absolute Eulerian momentum and buoyancy.

The derivation of a change in kinetic (DK) and po-

tential energy (DP) of the mean flow follows Haine and

Marshall (1998) to find

DE5DK1DP

5 r
0
Dy2

2666664 f 2|{z}
Kp

2 sM2|ffl{zffl}
GS

2 sfUa
z|ffl{zffl}

AS

1 N2s

�
s1

M2

N2

�
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

MIX

3777775 ,
(29)

3One can write down the equivalent Richardson number crite-

rion RiPV [N2/jUg
zU

E
z j, (Ug

zU
E
z )/jUg

zU
E
z j, but its usefulness is

limited because it is distinct from any other Richardson number

since it has a mix of two shears. For example, RiPV is not expected

to be relevant for Kelvin–Helmholtz instability. As such, and to

avoid confusion over what shear is required in the Richardson

number, the PV criterion is highly preferred.
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where s is the slope of the path along which the parcels

exchange, and 2M2/N2 is the isopycnal slope. The in-

dividual sources of energy are the kinetic energy

required for parcel switching (Kp; because of the cross-

front motion of the parcels), the available kinetic

energy from the geostrophic shear (GS) and the ageo-

strophic Eulerian shear (AS), and the potential energy

that needs to be overcome. This can be thought of as

mixing (MIX), or restratification, and potential energy

loss from the front, if this term is negative. Minimizing

Eq. (29) with respect to s gives the energy available for

the parcel exchange:

s
DEmin

5
M2

N2

�
fUa

z

2M2
2 1

�
. (30)

Inserting Eq. (30) into Eq. (29) and multiplying by N2

yields an equivalent PV-like quantity:

N2DE
min

r
0
Dy2

5 f 2N2|fflffl{zfflffl}
Kp

2 M4|{z}
GS

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{geostrophic fQ

1 fM2Ua
z|fflfflfflffl{zfflfflfflffl}

GS1ES1MIX

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Stokes-modified fQ

2
1

4
f 2(Ua

z )
2|fflfflfflfflfflffl{zfflfflfflfflfflffl}

ES1MIX

.

(31)

When this quantity is negative, there is available energy

for parcel exchange. Relative to the geostrophic shear-

only case, the ageostrophic Eulerian shear changes GS

by changing the parcel path [Eq. (30)], it contributes

available shear (AS), and it forces some mixing or

restratification since the parcel path is no longer along

isopycnals. Note that, excluding the last term (ES 1
MIX) and assuming that the only ageostrophic shear is

the anti-Stokes Eulerian shear 2US
z , the expression

above is identically fQ [as in Eq. (28)]. Since the last term

always contributes to a loss of energy from the mean flow

to turbulent motions, the anticyclonic PV criterion de-

rived in the previous section is always stricter. This dis-

sonance will be explored numerically in the next section.

Last, this derivation applies in cases forced by Ekman shear

(i.e., FSI; Thomas and Taylor 2010; Thomas et al. 2013).

4. Numerical linear stability analysis

The analytic stability criteria (section 3) were derived

in the special cases of constant downfront Stokes shear

(for SI) and QG perturbations (for GI). However, in-

stabilities in the mixed layer are not constrained this

way. Furthermore, while stability criteria predict the

onset of SI and GI, they do not address any changes in

the structure of these modes due to the presence of

Stokes drift, nor do they address the effect of the Stokes

shear force on these instabilities. Both of these issues are

explored in this section by numerically solving a linear

subset of Eqs. (A1)–(A4).

a. Assumptions and setup

To understand the effects of Stokes drift on SI andGI,

the viscid effects will be neglected in order to highlight

how the familiar, classic versions of these instabilities

FIG. 1. A schematic of the (a) downfront and (b) upfront Stokes drift scenarios. The blue lines show isopycnals,

with darker blue indicating denser water. The red lines show surfaces of constant downfront absolute Eulerian

momentum, with darker red indicating greater momentum. The perturbation equations are written from the per-

spective of the lower of the two parcels. A change of all signs would be from the perspective of the upper parcel and

have the same stability. For example, in (b) the lower parcel moves to the right (y0 . 0) along an isopycnal and brings

with it lower downfront momentum than its surroundings (u0 , 0). This exerts an acceleration in the cross-front y0

direction due to the Coriolis force that further enhances the initial perturbation (y0 . 0). In both cases, Ri5 0.5. Lines

of constant buoyancy and absolute momentum are only parallel when Ri 5 1.
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are altered at leading order by Stokes drift. Beginning

from Eqs. (A1) to (A4), assume

Ek5 0, Ro � min[1, (ml)21], d&Ro,

g5 1, m*O(1) . (32)

Note that Ek5Ro/Re5 00Re/‘ here. Assuming

Rod, Roa2 � 1 linearizes and simplifies the equations.

Averaging over the small (x, y, t) scales and retaining

O(1) and larger terms:

=
H
P1 k̂3UL 5 0, (33)

P
z
2B5 0, (34)

B
T
1 (UL � =

H
)B5 0, and (35)

=
H
�U1W

z
5 0. (36)

One steady-state solution to the above equations is the

Eady-like background state:

UL 5 z1 1, VL 5 0, W5 0,

B52Y1 z, P52Yz1
1

2
z2 . (37)

Lagrangian thermal wind balance holds, and although

VL 5 0, V and VS may be nonzero (if the cross-front

Eulerian flow is identically an anti-Stokes flow). Since

Roml � 1, the Stokes shear force mlRoUL � US can be

neglected. However, it is a leading-order term in the

perturbation equations (38)–(42). This mean state is

depicted in Fig. 2.

The perturbations are given by

Ro

d
[u0

t 1 (UL � =
h
)u0 1w0U

z
]1 k̂3 u0 1=

h
p0 5 0,

(38)�
Ro

d

���a
d

�2
[w0

t 1 (UL � =
h
)w0]1mlu0 �US

z

	
1 p0

z 2 b0 5 0, (39)

b0
t 1 (UL � =

h
)b0 1 (u0 � =

H
)B1

RoRi

d
w0B

z
5 0, (40)

=
h
� u0 1w0

z 5 0, and (41)

w0 5 0 on z5 0,21. (42)

The perturbations rely on only five dimensionless pa-

rameters: theRossby number of the perturbations Ro0 [
Ro/d, the aspect ratio of the perturbations a0 [ a/d, the

strength ml and depth scale l of the Stokes shear mlelz,

and the Lagrangian Richardson number of the mean

flow Ri. Note that d&Ro0Ro0 * 1, putting the per-

turbed motions in the submesoscale regime (Ro ; 1,

FIG. 2. The background flowwith arbitrary u (the angle between the

Stokes drift and the geostrophic flow) and a prescribed exponential

Stokes driftUS,VS profile. The geostrophic flowUG, corresponding to

the imposed buoyancy gradient, is shown with blue arrows.

FIG. 3. Growth rates for GI with (a) upfront (u 5 p) and (b) downfront (u 5 0) Stokes drift; Ri 5 5, m 5 1, l 5 5,

Ro 5 d 5 1022, a 5 1024, and Ek 5 0.
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Ri ; 1). Applying the typical scales in Table 1 yields

Ro ’ 0.1 and Ro0 ’ 10.

The perturbations are then assumed to have normal-

mode form in the x and y directions such that

u0 5<[~u(z)ei(kx1ly1st)] (and similarly for y0, w0, b0, p0).
The problem is posed as a generalized eigenvalue

problem with the growth rates s as eigenvalues and the

(complex) vertical structures ~u(z), ~y(z), ~w(z), ~b(z), and
~p(z) as eigenvectors. The background and perturbation

variables are discretized into 50 Chebyshev spectral

modes and solved on aGauss–Lobatto grid using the tau

method (see Boyd 2001). Further details and the

MATLAB code are given in Haney (2015).

The linear setup is chosen to model only the mixed

layer with a rigid lower boundary. No viscosity is used,

so no stress conditions are needed. Boccaletti et al.

(2007) show that introducing a moving mixed layer base

only weakly affects the linear instabilities within the

mixed layer, which is assumed to be true here. The

nonlinear simulations in section 5 below do include a

pycnocline below the mixed layer.

b. Energetics

Other useful tools in distinguishing unstable modes

are the energy sources of each mode, given by

DLe0

Dt
52 u0w0 �U

z|fflfflfflfflffl{zfflfflfflfflffl}
ESP

2 u0w0 �US
z|fflfflfflfflffl{zfflfflfflfflffl}

SSP

2 w0b0|ffl{zffl}
BP

2 =
h
� u0p0 2 ›

z
(w0p0)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

PW

1D , (43)

FIG. 4. Profiles of mean state conditions for flows with partially (a) downfront (u 5 p/4; the Ri 5 0.5 case) and

partially (b) upfront (u5 3p/4; the Ri 5 2 case) Stokes drift. (c),(d) Cross-frontal velocity y0 for the fastest growing

modes with background states (a) and (b), respectively. The thick black contours show isopycnals. The dashed line is

the PV5 0 line. In both cases, m5 2, l5 5, Ro5 d5 1022, a5 1024, and Ek5 0. The Lagrangian and geostrophic

velocities (UL and UG, respectively) are equivalent here. Note that all background state variables plotted are di-

mensionless and recall that all velocities are nondimensionalized by the Lagrangian velocity UL at the surface.
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where DL/Dt[ ›/›t 1UL � = is the Lagrangian total

derivative; e0 [ (1/2)[u0 � u0 1 (w0)2] is the kinetic energy

of the perturbed flow; PW is the pressure work; ESP is

the Eulerian shear production; SSP is the Stokes shear

production; BP is buoyancy production; and D is en-

ergy dissipation. The energy sources for each mode will

help identify the mode. For example, it is well estab-

lished that, in the absence of Stokes drift, GI extract

potential energy from the front (positive BP) thereby

reducing the horizontal buoyancy gradient and re-

stratifying, whereas SI extract kinetic energy from the

geostrophic shear (positive ESP), thereby reducing it

(Haine and Marshall 1998). The energy sources for

each mode will also serve as a point of comparison

between the linear stability analysis and the nonlinear

large-eddy simulations.

c. Stokes-modified baroclinic instabilities

As alluded to in section 3b, Stokes drift has only a

weak effect on GI. Since the mean Lagrangian shear in

the cases studied here has the same sign at the top and

bottom (see section 3b), all cases are unstable to GI. The

growth rate is only modestly changed, and a slight shift

to higher wavenumbers is evident (Fig. 3). Since GI is

driven by the potential energy throughout the mixed

layer (e.g., Eady 1949; Haine and Marshall 1998;

Boccaletti et al. 2007), it is unsurprising that changes in

shear over a small portion of the domain yield only

subtle changes in stability. Nakamura (1988) showed

that since GI is a result of interacting edge waves for a

given wavelength, strong shear reduces the penetration

depth of the edge waves. Therefore, longer edge waves

are required for them to interact and produce GI. This

appears to be the case for Stokes-modified GI, and the

relevant shear is the Eulerian shear. With downfront

Stokes drift, the anti-Stokes Eulerian shear reduces the

total Eulerian shear near the surface, which according to

Nakamura (1988) would increase the penetration depth

of the edge waves, resulting in smaller GI with larger

growth rates. This is consistent with the fact that GI are

smaller scale and grow faster with downfront Stokes

drift and are larger scale and grow slower with upfront

Stokes drift (Fig. 3). However, this effect is weak. The

work done on the GI by the Stokes shear force is gen-

erally small because GI are driven primarily by the po-

tential energy (BP) rather than the kinetic energy in

the shear.

Numerical solutions with exponential Stokes drift

confirm that the PV criterion for SI is valid for Stokes

drift profiles that decay exponentially with depth as

well as the constant shear profiles (not shown) con-

sidered in section 3c. In the cases where Stokes drift

decays exponentially with depth, the upper part of the

domain has PV fixed by the anti-Stokes Eulerian

flow, and the lower part has PV that is roughly de-

termined by the geostrophic shear (Fig. 4). These ca-

ses also show that neither Ri[N2/(UL
z )

2 , 1 nor

RiE [N2/(UE
z )

2 , 1 would consistently predict SI.

Furthermore, Fig. 4 shows that SI exists in, and only in,

the parts of the domain with anticyclonic PV, that is,

opposite sign to f.

Furthermore, the anticyclonic PV criterion extends

beyond the strictly downfront or upfront Stokes drift

cases presented in section 3c. Numerical solutions with

cross-front Stokes drift show that the anticyclonic PV

criterion holds even with Stokes drift incident at oblique

angles. Figure 4 shows cases with Stokes drift rotated

p/4 radians to the left of parallel and to the right of

FIG. 5. Profiles of energy production terms (BP5w0b0, ESP5u0w0 �Uz, and SSP5 u0w0 �US
z) for the flow shown

in Fig. 4. (a) Partially downfront and (b) partially upfront Stokes drift. Both cases have positive cross-front Stokes

drift VS. Recall that the averaging operator (�) is an average over the small horizontal scales x and y. The velocities

and length scales in the energy production terms have been nondimensionalized according to Table 1.
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FIG. 6. The initial PV structure is shaded. The black contours show the initial

buoyancy structure. Black boxes indicate the two fronts that are referred to as

F1 and F2. (a) Ri5 0.5,m5 0. (b)Ri5 0.5,m5 2. (c) Ri5 2,m5 1. In all cases,

the Stokes drift points out of the page.
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antiparallel, with the geostrophic flow to give partial

cross-front Stokes drift. Therefore, the criterion for SI

with arbitrary Stokes front alignment is as in Eq. (28)

with nomodification byVS (the cross-front Stokes drift

component).

Figure 4 also shows that the alignment of the Stokes-

altered SI is across isopycnals as suggested by the altered

shape of the momentum surfaces in the parcel switching

analysis. The momentum surfaces are less (more) steep

where the anti-Stokes Eulerian shear is stronger

(weaker or negative) than the geostrophic shear.

Therefore, although the instability criteria based on the

available energy is necessary but not sufficient, when SI

do exist, they align along the paths that tend tomaximize

their energy.

Haine and Marshall (1998) note that the stability of

such a layer depends on the buoyancy gradient within a

momentum surface, or the momentum gradient within a

buoyancy surface, each giving the anticyclonic PV cri-

terion for instability. Although these are two ways to

measure the same mean flow quantity (PV), the align-

ment of the ensuing instabilities reveals whether they

derive energy from the mean buoyancy gradient (po-

tential energy) or from the mean momentum gradient

(kinetic energy). In the classical case (waveless case; not

shown), SI align mostly with buoyancy surfaces and

therefore get their energy from the mean shear. The

Stokes-modified SI in Fig. 4 are aligned partially across

isopycnals, implying that they get a larger fraction (than

classical SI) of their energy from buoyancy production

(confirmed in Fig. 5). This is because the stronger ver-

tical shear near the surface adds enough momentum to

reduce the penalty for horizontal parcel movement

(because of the turning of momentum by the Coriolis

force). Therefore, when the momentum surfaces are

closer to horizontal, more potential energy may be

extracted from the front.

Figure 5 shows vertical profiles of the energy pro-

duction terms that dominate the SI in Fig. 4. In both

cases, BP and ESP are important. Therefore, the Stokes-

modified SI get some of their energy from the kinetic

energy in the front and some from the potential energy.

Therefore, this is a mechanism by which Stokes drift

may indirectly drive restratification. This mechanism for

restratification is distinct from that discussed in Li et al.

(2012) since theirs depends on the nonlinear interaction

between multiple tilted LC. Here, the anti-Stokes Eu-

lerian shear maintains negative PV to switch on SI and

changes the available kinetic energy allowing SI to do

more BP.

TABLE 4. The physical and dimensionless parameters of the LES.

Case 1 (control) Case 2 Case 3

Computation grid, Nx, Ny, Nz 128 3 2048 3 72 128 3 2048 3 72 128 3 2048 3 72

Physical domain size, Lx, Ly, Lz 500m 3 8 km 3 275m 500m 3 8 km 3 275m 500m 3 8 km 3 270m

Grid resolution, Dx, Dy, Dz 3.9m 3 3.9m 3 1m 3.9m 3 3.9m 3 1m 3.9m 3 3.9m 3 1m

Horizontal stratification, M2 7.0 3 1028 s22 7.0 3 1028 s22 7.0 3 1028 s22

Mixed layer stratification, N2 3.5 3 1027 s22 3.5 3 1027 s22 1.4 3 1026 s22

Pycnocline stratification, N2
pyc 1024 s22 1024 s22 1024 s22

Deep stratification, N2
deep 4N2 4N2 4N2

Latitude 358N 358N 358N
Coriolis frequency 8.3 3 1025 s21 8.3 3 1025 s21 8.3 3 1025 s21

Mixed layer depth, H 50m 50m 50m

Wind stress, t 0Nm22 0 Nm22 0 Nm22

Surface Stokes drift, US
0 0m s21 0.083m s21 0.042m s21

Stokes drift e-folding depth, HS 10m 10m 10m

Richardson number, Ri 0.5 0.5 2

Stokes shear, ml 0 10 5

Geostrophic shear, g 1 1 1

Stokes depth, l — 5 5

TABLE 5. The presence of SI is shown depending on the strength

of the front and its alignment with the Stokes drift. Realistic as-

sumptions about the nondimensional parameters are made: ml .
g implies that the Stokes and anti-Stokes shears dominate the

geostrophic shear at the surface; mle2l . g implies that the Stokes

depth is sufficiently shallow that the geostrophic shear dominates

somewhere above the pycnocline (i.e., the geostrophic shear is

relevant for PV in the deep mixed layer). In this sense, the deep

mixed layer is defined as the layer below zd, where zd is defined by

mlelzd 5g. Since the LES runs will each contain two fronts, the

fronts are labeled F1 and F2, with F1 always containing downfront

Stokes shear (see Fig. 6).

Front Rig [ Ri/g2 u Stokes layer Deep mixed layer

F1 0.5 0 No SI SI, SSP . 0

F2 0.5 p Strong SI, SSP , 0 SI, SSP , 0

F1 2 0 No SI No SI

F2 2 p SI, SSP , 0 No SI
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The altered PV and available energy due to the anti-

Stokes Eulerian flow demonstrate the effects of the

mean flow on SI; however, the perturbation Stokes shear

force mlu0 �US
z also influences SI. While the Stokes-

altered mean flow affects SI through the vertical ad-

vection of the mean horizontal momentum (through the

w0Uz term), the Stokes shear force alters the vertical

momentum of the perturbed flow. When SI are present,

ESP (which comes exclusively from the horizontal mo-

mentum equation) is positive (u0w0 �Uz . 0). SSP

(u0w0 �US
z ; which comes exclusively from the vertical

momentum equation) is identically thework done by the

FIG. 7. Turbulent cross-front velocity y0 is shaded for theRi5 0.5,m5 0 case.A characteristic

alternating cross-front velocity feature of SI is highlighted within the orange box. The initial PV

and buoyancy structure for this case are given in Fig. 6a. The black contours are alongfront-

averaged isopycnals.

FIG. 8. Energetics and PV evolution of F2 in the Ri5 0.5,m5 0 case. Hovmöller plots of (a) volume-integratedN2,

(b) horizontally integrated PV (shaded) with buoyancy contours in black, (c) volume-integrated ESP5 u0w0 �Uz, and

(d) horizontally integratedESP. The initial PV and buoyancy structure for this case are given in Fig. 6a. Here, only F2

is shown (all quantities are integrated within F2 only), but the results are similar for F1.
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Stokes shear force. When SI dominates, SSP is only

positive when the Stokes and Eulerian shears have the

same sign. Therefore, in the case with upfront (down-

front) Stokes drift in Fig. 4, the Stokes shear force does

negative (positive) work on SI.

The near-surface, Stokes-modified PV layer dem-

onstrates the role of Stokes drift in the stability of

balanced and unbalanced, baroclinic motions. Fur-

thermore, this suggests that computing the PV solely

based on the geostrophic flow, or the presence of SI

based solely or partially on Ri (e.g., Li et al. 2012;

Thomas et al. 2013; Hamlington et al. 2014), will result

in significant errors. If the Stokes drift and geostrophic

flow are downfront (upfront), the Stokes-altered PV

suppresses (enhances) SI near the surface. Thus,

downfront Stokes drift has the opposite effect on the

PV as downfront winds. Additionally, if SI are induced

by the Stokes drift, the shape of constant momentum

surfaces favors increased BP by SI. This provides a

mechanism by which Stokes drift may restratify

(rather than mix through LC) the mixed layer.

5. Large-eddy simulations

The previous sections necessarily omit nonlinear

effects by assuming small-amplitude perturbations,

but what happens when these perturbations are

allowed to grow and interact with each other? To

complement the analytic and numerical linear stabil-

ity results in sections 3 and 4, a suite of LES have been

run. A limited analysis of these runs is provided here

to illustrate the robustness of the preceding theory

and linear stability results. These nonlinear simula-

tions confirm many results of the previous sections:

Stokes drift sets the PV near the surface through the

anti-Stokes Eulerian flow, SI are present in and only in

regions where the PV is anticyclonic, and, in regions

where SI are dominant, the Stokes shear force does

work against the SI.

Three simulations are performed with different initial

mean states:

1) a control case with a negative PV front without

Stokes drift;

2) a case with negative PV below the influence of the

Stokes drift; and

3) a case with positive PV below the influence of the

Stokes drift.

The latter two cases were chosen to be similar to the

mean states in Fig. 4. The initial PV and buoyancy of

each case are shown in Fig. 6, and the LES parameters

for each case are given in Table 4. The linear analyses of

FIG. 9. Turbulent cross-front velocity y0 is shaded for the Ri 5 0.5, m 5 2 case. A weak SI

feature is highlighted within the orange box in F1, while there are strong SI in F2. The near-

surface alternating cross-front velocity features are due to LC. The initial PV and buoyancy

structure for this case are given in Fig. 6b. The black contours are alongfront-averaged iso-

pycnals. Note that SI only appear in regionswhere the PV is negative (see Fig. 6b) such as below

the Stokes layer in F1 and F2 and into the Stokes layer in F2.

3048 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 45



sections 3 and 4 can be used to predict the presence of SI

and the work done by the perturbation Stokes shear

force on SI in the LES. These predictions are given in

Table 5.

a. Model configuration

The National Center for Atmospheric Research

(NCAR) LES model (Moeng 1984; McWilliams et al.

1997; Sullivan and Patton 2011) is used to solve the

WABEqs. (1)–(3). Horizontal derivatives are computed

pseudospectrally, and a second-order finite difference

scheme is used for vertical derivatives. This model is

described in great detail in McWilliams et al. (1997) and

has been used to simulate a realistic mixed layer with

fronts and Stokes drift (Hamlington et al. 2014). The

side boundaries of the domain are periodic. The top

boundary condition is no flux and no stress (i.e., no

wind). No wind is applied to attempt to isolate the ef-

fects of Stokes drift rather than wind-driven flow. The

LES is set up to closely emulate the background state of

the linear stability (as in Fig. 4, but without cross-front

Stokes drift; VS 5 0); however, the periodic boundary

condition requires that the two fronts be simulated side

by side. This allows for two different alignments of

Stokes drift (parallel and antiparallel) with the geo-

strophic shear in each simulation. A monochromatic

Stokes drift is chosen to emulate remotely generated

swell with a period of approximately 9 s and an e-folding

depth of 10m. The domain is intentionally restricted in

the alongfront direction to suppress GI. Since the in-

fluence of Stokes drift on SI is the most robust result of

the analytic and linear analyses, this will be the focus of

the LES in this work. The LES parameters for each

simulation are given in Table 4.

The buoyancy profile is specified as two piecewise

continuous fronts with smoothing at the transitions. The

fronts are given constant stratification in the horizontal

and vertical in order to tightly control Ri (outside of

the transition regions). The initial geostrophic velocity

is then given by the thermal wind relation uzjt50 5
2byjt50/f . The anti-Stokes Eulerian flow is added to the

geostrophic flow to determine the Eulerian flow that the

FIG. 10. As in Fig. 8, but for Ri5 0.5,m5 2 and for F1. SinceUS is nonzero for this case, Hovmöller plots of (e) the
volume-averaged SSP5u0w0US

z (Stokes shear production, or equivalently, the work done by the Stokes shear force

on turbulent motions) and (f) the horizontally integrated SSP are also included. The initial PV and buoyancy

structure for this case are given in Fig. 6b. Figure 9 indicates that SI are only weakly present at depth in this front

(F1). This is confirmed by the weakly positive ESP below the Stokes layer.
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model evolves. The horizontal velocity (both u and v) is

then given a small-amplitude, random (white noise)

perturbation that is independent of depth. In addition to

the two front buoyancy structure, a strongly stratified

(N2
pyc 5 1024 s22) pycnocline is used at ’50m deep to

create a more realistic mixed layer than in the linear

stability analysis (which had a simple rigid bottom

boundary).

In the two cases with Stokes drift, the near-surface PV

is negative where the Stokes drift is upfront and positive

where it is downfront (Figs. 6b,c). In the case with higher

vertical stratification (Ri 5 2), the PV is positive at

depth, and in the case with lower vertical stratification

(Ri5 0.5), the PV is negative at depth (as in the control

case; Fig. 6). The two separate frontal regions denoted

F1 and F2, which will be referred to throughout the rest

of this section, are indicated in Figs. 6, 7, 9, and 12. In

both of the cases with Stokes drift, although no wind

stress is applied, an Ekman layer develops because the

anti-Stokes shear is nonzero at the surface. This sets up a

Stokes–Ekman flow (see Gnanadesikan and Weller

1995; Polton et al. 2005; McWilliams et al. 2014) that will

be discussed further in a subsequent paper on in-

stabilities that depend on viscosity.

b. Symmetric instabilities

SI are most easily seen in the perturbation cross-front

velocity y0 that alternates in direction. The waveless

control case (Ri 5 0.5, m 5 0) initially has negative PV

throughout both fronts and exhibits SI as expected

(Figs. 6a, 7, and 8), which reach finite amplitude in

about a day. In this case, since the only mean Eulerian

shear is geostrophic, Ri, 1 is equivalent to PV, 0. The

PV in this case is initially negative (’23 3 10211 s23

between the surface and 47m deep) and is increased by

an order of magnitude (to ’22 3 10212 s23) within a

few days of the onset of SI (Fig. 8b). The restoration of

PV toward zero is coincident with an increase in volume-

integrated vertical stratification (Fig. 8a), implying that

SI get some of their energy fromBP. The ESP (Figs. 8c,d)

shows a strong increase at approximately the same

time that the SI appear in the cross-front velocity, and

when N2 begins to increase and the PV begins to in-

crease. These features in cross-front velocity, PV, and

FIG. 11. As in Fig. 10, but for F2 of theRi5 0.5,m5 2 case. The initial PV and buoyancy structure for this case are

given in Fig. 6b. Figure 9 indicates that SI are strong at depth and into the Stokes layer in this front (F2). This is

consistent with strongly positive ESP and negative SSP below and into the Stokes layer.
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ESP will be used as a measure of whether SI are present

in the cases with Stokes drift.

As predicted in Table 5, SI are present in and only in

regions with negative PV. The Ri 5 0.5, m 5 2 case

(Figs. 6b, 9, 10, 11) exhibits alternating cross-front ve-

locity aligned with isopycnals at depth in both F1 and F2

(Fig. 9). Near the surface, these features only appear in

F2 where the Stokes drift contributes to reduce the PV.

There are also alternating cross-front velocity features

near the surface in F1; however, the vertical velocity at

5m deep (not shown) indicates that these are a mixed

gravitational and LC instabilities. SI affect the mean

state in F2 by increasing the stratification and mean PV

between 20 and 47m deep from ’26 3 10211 s23 ini-

tially to’283 10212 s23 (Figs. 11a,b). In F1, where the

SI are weaker, the mean PV below the Stokes layer in-

creases from’243 10212 s23 initially to’23 10211 s23

(Figs. 10a,b). In F2, at every depth where SI are dominant

(below;10m), SSP (Figs. 11e,f) is negative as predicted in

Table 5 because the Stokes shear opposes the Eulerian

shear in this front. ESP (Figs. 11c,d) is positive in this re-

gion, consistent with the energetics of SI found in the

control case and the linear stability analysis. Within the

Stokes layer, no SI are present in F1 because the PV is

positive (Figs. 6, 9). The positive SSP and ESP (Figs. 10c–f)

near the surface in F1 are due to LC, which display strong

vertical velocity perturbations at 5m (not shown).

SI are absent everywhere below the Stokes drift layer

in the Ri 5 2, m 5 1 case (Figs. 6c, 12, 13, and 14; as

predicted in Table 5) since the PV is positive at depth in

both fronts (Fig. 6c). In the downfront Stokes layer (F1),

the strongly positive PV ismaintained by the anti-Stokes

flow, and as expected, no SI are present. The shear pro-

duction is dominated by positive SSP (Figs. 13e,f), indi-

cating that LC are the dominant instability in this front.

In the upfront Stokes case (F2 of the Ri 5 2, m 5 1

case), negative PV is maintained by the anti-Stokes flow,

and weak SI are present (Fig. 12). The energetics of F2

(Fig. 14) are not as starkly in agreement with the pre-

dictions in Table 5 as in theRi5 0.5,m5 2 case (Fig. 11).

The ESP (Figs. 14c,d) oscillates but shows no strong

increases coincident with SI features in the cross-front

velocity. However, the SSP (Figs. 14e,f) is notably neg-

ative after about 6 days, indicating that SI, not LC, are

dominant. Last, the mean PV between the surface and

20m increases from’253 10211 s23 initially to’223
10211 s23 after 13 days (Fig. 14b) due to the weak SI.

Despite the fact that there are two fronts adjacent to

each other, it has been assumed in the analysis that the

effects of the fronts on each other are weak. Some evi-

dence for this can be seen in the weak cross-front velocities

at depth in Figs. 7, 9, and 12. The strong cross-front ve-

locities near the surface in these cases are due to LC. Al-

though the LES featured here showcase more physics than

FIG. 12. Turbulent cross-front velocity y0 is shaded for the Ri 5 2, m 5 1 case. A weak SI

feature is highlighted within the orange box in F2. The near-surface alternating cross-front

velocity features near the surface are due to LC. The black contours are alongfront-averaged

isopycnals. The initial PV and buoyancy structure for this case are given in Fig. 6c. SI are weakly

present in F2where the Stokes-modified PV is negative near the surface, and SI are absent from

F1 where the PV is positive at all depths.
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were discussed, such as LC and Stokes–Ekman layers (see

McWilliams et al. 2014), a discussion of these physics will

appear in a subsequent paper. Haney (2015) presents a

preliminary discussion of these physics.

6. Conclusions

The presence of Stokes drift alters the stability of the

mixed layer through the Stokes–Coriolis force. After a

few inertial periods, the Stokes–Coriolis force will be in

balance with the Eulerian–Coriolis force, the pressure

gradient force, and the shear stress. To leading order in

Roml, this alters the strength of the Eulerian–Coriolis

force and the Eulerian shear while maintaining the same

Lagrangian–Coriolis force and shear. This can result in a

front with dramatically different Eulerian shear than

Lagrangian shear because of the anti-Stokes shear.

Therefore, the instabilities that depend most on the

Eulerian shear, such as SI, are more affected than those

that depend mostly on the Lagrangian shear, such as

KHI (Holm 1996; section 3a) and GI (section 3b).

TheCharney–Stern–Pedlosky criteria forQGbaroclinic

instabilities are proven to be amenable to modification

and to depend on the properly reinterpreted QGPV

and shear. Thus, after the Eulerian flow adjusts to the

arrival of waves, the Lagrangian thermal wind, and

therefore stability of the mixed layer to GI, is as it was

before the waves arrived. If the flow is unstable to GI, an

increase (decrease) in Eulerian shear due to anti-Stokes

flow appears to reduce (increase) the wavenumber and

growth rate of the GI, consistent with the theory es-

tablished by Nakamura (1988). Also, if the layer is un-

stable to GI, the work done on the GI by the Stokes

shear force is fairly weak because GI extract energy

primarily from the potential energy, rather than the

shear.

The Hoskins (1974) criterion for SI is proven analyt-

ically for a front with Stokes drift that has constant

shear. In the presence of anti-Stokes, or any ageo-

strophic Eulerian shear, the criterion Ri , 1 is not

equivalent to the necessary criterion for SI (fQ , 0).

This is because the presence of ageostrophic Eulerian

shear decouples the relationship between the shear and

the horizontal buoyancy gradient, which combine to

form the horizontal component of the PV. When the

Stokes drift is downfront (upfront), the anti-Stokes

FIG. 13. As in Fig. 10, but for Ri 5 2, m 5 1 and for F1. The initial PV and buoyancy structure for this case are

given in Fig. 6c. Figure 12 indicates that SI are absent at all depths in this front (F1). This is consistent with very little

ESP outside the Stokes layer. The weak ESP and strong SSP in the Stokes layer are due to LC.
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Eulerian flow maintains positive (negative) PV, result-

ing in less (more) favorable conditions for SI. This ori-

entation is opposite that of the frictional injection of PV

by winds (Thomas 2005). Therefore, in a common sce-

nario in which the winds and waves are aligned, the PV

due to the anti-Stokes flow and frictional injection of PV

by winds will be competing effects, and in scenarios with

(swell) waves propagating into the wind, these effects

will conspire to maintain and inject PV of the same sign.

While this rule of thumb aids in remembering the sign of

the effects, it is important to remember that the wind

injection of PV differs from the indirect way Stokes

forces affect PV by changing frontal balances and mix-

ing efficiency.

Parcel switching analysis shows that the anti-Stokes

shear changes the path of SI to be closer to surfaces of

constant momentum rather than surfaces of constant

buoyancy as in inviscid, no Stokes, hydrostatic cases of SI.

This results in more cross-isopycnal flow and therefore

more restratification (compared to the no Stokes case)

done by SI. Although this linear, inviscid result is not

confirmed in the nonlinear, viscid LES, thismechanism, as

well as the activation of SI by maintaining low PV (which

is confirmed by the LES), is a way in which Stokes drift

may indirectly cause restratification rather than mixing as

is commonly thought of LC.

The analytic and parcel switching results are con-

firmed with inviscid linear stability analysis and again

with viscid nonlinear LES. The linear stability analysis

shows that the Stokes shear force does work against SI

when the Stokes and Eulerian shears have opposite sign,

and this result is confirmed by the LES. The robustness

of the Stokes-modified PV, and induced SI, suggests that

this is the dominant effect of Stokes drift on baroclinic

instabilities in the mixed layer.

Last, there are several unaddressed physical processes

that occur in both the linear stability analysis and the

LES. These include LC under the influence of a front,

the Stokes-modified Ekman layer, and how it mod-

ifies SI and GI. These topics will be addressed in a

FIG. 14. As in Fig. 10, but for Ri 5 2, m 5 1 and for F2. The initial PV and buoyancy structure for this case are

given in Fig. 6c. Figure 12 shows weak SI within the Stokes layer where the Stokes-modified PV is negative in this

front (F2). This is consistent with the weakly negative SSP here.
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forthcoming paper that focuses on the instability mech-

anisms that depend on viscosity in the mixed layer.
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APPENDIX

Nondimensional Equations

The nondimensional, wave-averaged, Boussinesq

equations with the choice of scalings in Table 2 are given

without approximation below. Approximations to these

equations are made in section 4 to solve for the unstable

modes of a front with Stokes drift. Other approxima-

tions are made by Haney (2015) to reproduce the flow

regimes in Table 3:
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where, recall from Table 1, Û; ÛLU, û0 ; dÛLu0, Ŵ;
[(ÛLH)/L]W, and ŵ0 ; [(ÛLH)/l]w0; B̂; f[(ÛL)2Mr]/

HgB, b̂0 ; f[(ÛL)2M0
r]/Hgb0, P̂ ; (ÛL)2MrP; and p̂0 ;

(ÛL)2M0
rp

0, with c(�) denoting dimensional variables.
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