Interactions Between Surface Gravity Wave Groups and Deep Stratification in the Ocean

<u>Sean Haney</u> and William Young Scripps Institution of Oceanography

The Eulerian Return Flow

- Longuet-Higgins and Stewart (1964) showed that there is a deep (decaying algebraically with depth) Eulerian return flow beneath groups of surface waves.
- McIntyre (1981) comments: "...in real oceanographic applications the existence of stable stratification can greatly modify the form of the return flow, coupling it directly to internal gravity waves."

Overview and Scales

Surface Boundary Forcing

 The deep return flow is forced by the divergence of the Lagrangian mean mass flux.

Neglect surface displacement (set up/down) due to wave group

$$@z = 0, \quad \overline{w} = + (\overline{u\zeta})_x$$

 $@z = 0, \quad \overline{w} = M_x$

$$M = \overline{u_1 \zeta_1} = \frac{1}{2} ck |a|^2$$
$$= \int_{-\infty}^0 \boldsymbol{u}^S dz$$

What Creates the Return Flow?

 Horizontally varying waves (Stokes drift) move water along at different rates creating convergence/divergence: Stokes pumping.

What Creates the Return Flow?

 Horizontally varying waves (Stokes drift) move water along at different rates creating convergence/divergence: Stokes pumping.

The Stratified Return Flow in 2D

 $\overline{u}_2 = -\psi_z, \ \overline{w}_2 = \psi_x$ Assumption: 2D flow $O(\epsilon^2)$ Advantage in 2D: N(z) $\psi_{zt} = \left(\overline{p}_2 + \frac{1}{2}\overline{|\boldsymbol{u}_1|^2}\right)$ Identically zero for irrotational flow. Small $\psi_{xt} = -\left(\overline{p}_2 + \frac{1}{2}\overline{|\boldsymbol{u}_1|^2}\right)_z + \overline{b}_2$ outside the mixed layer. **Includes terms like Stokes** $\overline{b}_{2t} = -\psi_x N^2 \longleftarrow \begin{array}{c} \text{Buoyancy is back} \\ \text{at this order} \end{array}$ Vortex, Stokes Coriolis, etc. $\left[\partial_t^2 \left(\partial_x^2 + \partial_z^2\right) + f^2 \partial_z^2 + N^2 \partial_x^2\right] \psi = A(x, y, t) e^{2kz}$ Negligible. Consider the packet $Ro = \frac{c}{2f\ell} \sim 200$ $@z = 0, \quad \overline{w} = M_x \quad \Longrightarrow \quad @z = 0, \quad \psi = M$ BC:

The Stream Function in the Group Frame

Now we will move into the frame moving at the group velocity (c/2)

$$\tilde{x} = x - \frac{1}{2}ct \qquad \partial_t \to -\frac{1}{2}c\partial_{\tilde{x}}$$
$$\left[\partial_{\tilde{x}}^2 + \partial_z^2 + \left(\frac{2N}{c}\right)^2\right]\psi = 0$$

Exercise: assume constant stratification (N), and ψ is the stream function for an internal wave with horizontal wavenumber q, and vertical wavenumber m.

Then we have a restriction on the internal wave phase speed:

$$-q^2 - m^2 + \left(\frac{2N}{c}\right) = 0$$

IW *phase* speed

 $\frac{N}{\sqrt{a^2+m^2}}=\frac{c}{2}~~\mbox{SW group}$ (forcing) speed

Again assuming constant stratification and vertical modes $\phi_n(z)$ we can put a lower bound on the stratification required to for IW generation.

$$\left[\frac{d^2}{dz^2} + \left(\frac{2N}{c}\right)^2 - q_n^2\right]\phi_n = 0$$

Again assuming constant stratification and vertical modes $\phi_n(z)$ we can put a lower bound on the stratification required to for IW generation. Can solve for any N(z)

$$\left[\frac{d^2}{dz^2} + \left(\frac{2N}{c}\right)^2 - q_n^2\right]\phi_n = 0$$

Again assuming constant stratification and vertical modes $\phi_n(z)$ we can put a lower bound on the stratification required to for IW generation. Assume constant N for now $\left[\frac{d^2}{dz^2} + \left(\frac{2N}{c}\right)^2 - q_n^2\right]\phi_n = 0 \xleftarrow{\text{substitute}} \phi_n = \sin\left(\frac{n\pi z}{h}\right)$ $-\left(\frac{n\pi}{h}\right)^2 + \left(\frac{2N}{c}\right)^2 + q_n^2 = 0$ $Nh > \frac{\pi c}{2}$

Again assuming constant stratification and vertical modes $\phi_n(z)$ we can put a lower bound on the stratification required to for IW generation. Assume constant N for now $\left\lceil \frac{d^2}{dz^2} + \left(\frac{2N}{c}\right)^2 - q_n^2 \right| \phi_n = 0 \xleftarrow{\text{substitute}} \phi_n = \sin\left(\frac{n\pi z}{h}\right)$ $-\left(\frac{n\pi}{h}\right)^2 + \left(\frac{2N}{c}\right)^2 + q_n^2 = 0$ $Nh > \frac{\pi c}{2} \xrightarrow{\text{Looks like}} \int_{-\pi}^{0} Ndz = \frac{n\pi c}{2}$

The stratification in the ocean turns out to be a little TOO WEAK for IW emission under this 2D assumption in the finite depth case. SEVERAL full depth profiles were tested and none were sufficiently stratified.

3D Internal Wave Wakes

- In 2D the IWs are TOO SLOW (because the stratification is TOO WEAK) to keep up with their energy source (SWs), but in 3D, they need not be as fast.
- IWs propagating obliquely to the SWs may still extract energy from the waves.
- Assumptions/downsides (relative to 2D method): Constant N.

The Wake Angle

 The wake angle is predicted by the stratification, depth, and SW group speed.

Energy Flux

$$J = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varpi_2(x, y, 0, t) w_2(x, y, 0, t) dx dy$$

$$J_n = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{\varpi}_2 \hat{w}_2^* \frac{dqds}{2\pi} = \frac{c}{2\pi h} \int_0^{\infty} q^2 |\hat{M}|^2 \sqrt{\frac{q_*^2 - q^2}{m_n^2 - q_*^2 + q^2}} dq$$

- Energy flux peaks with IW frequency close to N.
- Total energy flux in all modes: $J \approx 5 \times 10^{-3} W$

(per wave group)

Energy Flux is Very Sensitive to Stratification, Depth, and SW Height

How Much Energy Are We Talking About?

- <u>Upper bound</u>: SW loss of energy to IW cannot be enough to kill SWs. SW half life: >1000 years.
- Lower bound: SW to IW energy flux should be seen in observations. Pinkel (1975) show peak in near N displacement (by IWs) spectra.

 $\frac{E_{obs}}{J_{theory}} = \text{Timescale of forcing near N peak} \xrightarrow{\text{Fig. 6. Hawaii isotherm displacement spectrum, 40 d.f., mean depth}_{110 m.} Pinkel, JGR 1975$

=1 day - years (depending on N, h, and a_0)

Conclusions

- In 2D, the IW phase speed must match the SW group speed to for IW generation.
 - The stratification in most of the open ocean is too weak to produce such fast IWs.
 - The stratification is still too weak even considering non-uniform stratification with sharp pycnoclines.
 - Despite this, even in the absence of IW radiation, the return flow is altered significantly from the dipole shape shown by e.g. McIntyre (1981).
- In 3D IWs are always generated (even in very weak stratification), and propagate at oblique angles to the SWs given by the stratification, depth and SW group speed.
- The energy lost by the surface waves is sufficiently small that swell can propagate long distances without substantial damping (half life ~ 1000y).
- The energy input to surface waves may contribute significantly to observed near N IW energy.