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The	Eulerian	Return	Flow 		

•  Longuet-Higgins	and	
Stewart	(1964)	showed	that	
there	is	a	deep	(decaying	
algebraically	with	depth)	
Eulerian	return	flow	
beneath	groups	of	surface	
waves.	

•  McIntyre	(1981)	comments:	
“…in	real	oceanographic	
applica(ons	the	existence	
of	stable	stra(fica(on	can	
greatly	modify	the	form	of	
the	return	flow,	coupling	it	
directly	to	internal	gravity	
waves.”		

McIntyre	1981	

UNSTRATIFIED	



Overview	and	Scales	
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Stokes	
Pumping	
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Stokes	Dri_	for	Surface	Wave	
Groups		
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Surface	Boundary	Forcing		

•  The	deep	return	flow	is	forced	by	the	
divergence	of	the	Lagrangian	mean	mass	flux.	
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Neglect	surface	displacement	(set	
up/down)	due	to	wave	group		
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What	Creates	the	Return	Flow?	

•  Horizontally	varying	waves	(Stokes	dri_)	
move	water	along	at	different	rates	crea(ng	
convergence/divergence:	Stokes	pumping.	

Stokes	Pumping	
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What	Creates	the	Return	Flow?	

•  Horizontally	varying	waves	(Stokes	dri_)	
move	water	along	at	different	rates	crea(ng	
convergence/divergence:	Stokes	pumping.	

Stokes	Pumping	

Isopycnal	



The	Stra(fied	Return	Flow	in	2D	
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The	Stream	Func(on	in	the	Group	
Frame	
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Now	we	will	move	into	the	frame	moving	at	the	group	velocity	(c/2)	

therefore	

Exercise:	assume	constant	stra(fica(on	(N),	and	ψ	is	the	stream	func(on	for	
an	internal	wave	with	horizontal	wavenumber	q,	and	ver(cal	wavenumber	m.	

Then	we	have	a	restric(on	on	the	internal	wave	phase	speed:	
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How	Stra(fied	Must	the	Ocean	Be	to	
Allow	2D	IW	Genera(on?	

Again	assuming	constant	stra(fica(on	and	ver(cal	modes													we	can	put	a	lower	bound	
on	the	stra(fica(on	required	to	for	IW	genera(on.	
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How	Stra(fied	Must	the	Ocean	Be	to	
Allow	2D	IW	Genera(on?	

Again	assuming	constant	stra(fica(on	and	ver(cal	modes													we	can	put	a	lower	bound	
on	the	stra(fica(on	required	to	for	IW	genera(on.	
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How	Stra(fied	Must	the	Ocean	Be	to	
Allow	2D	IW	Genera(on?	

Again	assuming	constant	stra(fica(on	and	ver(cal	modes													we	can	put	a	lower	bound	
on	the	stra(fica(on	required	to	for	IW	genera(on.	
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Assume	constant	N	for	now	



How	Stra(fied	Must	the	Ocean	Be	to	
Allow	2D	IW	Genera(on?	

Again	assuming	constant	stra(fica(on	and	ver(cal	modes													we	can	put	a	lower	bound	
on	the	stra(fica(on	required	to	for	IW	genera(on.	
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The	stra(fica(on	in	the	ocean	turns	out	to	be	a	lihle	TOO	WEAK	for	IW	
emission	under	this	2D	assump(on	in	the	finite	depth	case.	SEVERAL	
full	depth	profiles	were	tested	and	none	were	sufficiently	stra(fied.	
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3D	Internal	Wave	Wakes	

•  In	2D	the	IWs	are	TOO	SLOW	(because	the	
stra(fica(on	is	TOO	WEAK)	to	keep	up	with	
their	energy	source	(SWs),	but	in	3D,	they	
need	not	be	as	fast.	

•  IWs	propaga(ng	obliquely	to	the	SWs	may	s(ll	
extract	energy	from	the	waves.		

•  Assump(ons/downsides	(rela(ve	to	2D	
method):	Constant	N.	
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!The	Wake	Angle	

•  The	wake	angle	is	
predicted	by	the	
stra(fica(on,	
depth,	and	SW	
group	speed.	



Energy	Flux	

•  Energy	flux	peaks	
with	IW	frequency	
close	to	N.	

•  Total	energy	flux	in	
all	modes:	

					
			(per	wave	group)	
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Energy	Flux	is	Very	Sensi(ve	to	
Stra(fica(on,	Depth,	and	SW	Height	
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How	Much	Energy	Are	We	Talking	
About?	

•  Upper	bound:	SW	loss	of	
energy	to	IW	cannot	be	
enough	to	kill	SWs.	SW	
half	life:	>1000	years.	

•  Lower	bound:	SW	to	IW	
energy	flux	should	be	seen	
in	observa(ons.	Pinkel	
(1975)	show	peak	in	near	
N	displacement	(by	IWs)	
spectra.	

Pinkel,	JGR	1975	

Near	N	peak	in	frequency	
spectrum.	Possibly	forced	by	
surface	waves?	

E
obs

J
theory

=Timescale of forcing near N peak

=1 day� years (depending on N, h, and a0)



Conclusions	
•  In	2D,	the	IW	phase	speed	must	match	the	SW	group	speed	to	for	IW	

genera(on.	
–  The	stra(fica(on	in	most	of	the	open	ocean	is	too	weak	to	produce	such	

fast	IWs.	
–  The	stra(fica(on	is	s(ll	too	weak	even	considering	non-uniform	

stra(fica(on	with	sharp	pycnoclines.	
–  Despite	this,	even	in	the	absence	of	IW	radia(on,	the	return	flow	is	altered	

significantly	from	the	dipole	shape	shown	by	e.g.	McIntyre	(1981).	
•  In	3D	IWs	are	always	generated	(even	in	very	weak	stra(fica(on),	and	

propagate	at	oblique	angles	to	the	SWs	given	by	the	stra(fica(on,	depth	
and	SW	group	speed.	

•  The	energy	lost	by	the	surface	waves	is	sufficiently	small	that	swell	can	
propagate	long	distances	without	substan(al	damping	(half	life	~	1000y).	

•  The	energy	input	to	surface	waves	may	contribute	significantly	to	
observed	near	N	IW	energy.	


