Mixing and Restratification in the Ocean Mixed Layer: Competing Mechanisms

Sean Haney^{1,2}

Baylor Fox-Kemper^{2,3}, Keith Julien⁴

¹University of Colorado, Boulder, Department of Atmospheric and Oceanic Sciences

²Cooperative Institute for Research in Environmental Sciences ³Brown University, Department of Earth, Environmental, and Planetary Sciences ⁴University of Colorado, Boulder, Department of Applied Mathematics

PODS VIII

October 7th, 2014 Lihue, HI

Outline

- * Motivation and Objectives
- * Problem Description
 - Schematic
 - Governing equations
- * Approaches and Results
 - Linear stability
 - Nonlinear, Large Eddy Simulation (LES)
- * Conclusions and Future Work

Motivation and Objectives

- Mixed layer dynamics may impede or enhance :
 - Heat, momentum, fresh water, and gas fluxes between ocean and atmosphere.
 - Vertical and horizontal stratification
- Which dynamical mixing and restratifying mechanisms, are important and under what combination of winds, waves, and fronts?
- How do the winds and waves stabilize or destabilize the typical the front?
- How does the front stabilize or destabilize

the windy/wavy layer? Cloud Art: http://www.seos-project.eu/modules/oceancurrents/images/ currents_ch2_wind_cartoon.png

What's Out There?

http://www.oilspillsolutions.org/evaluation.htm

http://dx.doi.org/10.5670/oceanog.2012.37

Stokes Drift

wave phase : t / T = 3.000

- Stokes Drift is the wave averaged velocity following a particle.
- Lagrangian, not Eulerian.
- Decays steeply with depth.

http://en.wikipedia.org/wiki/File:Deep_water_wave.gif

Governing Equations and Scalings
• Boussinesq, rotating, surface gravity wave averaged equations

$$\partial_t \mathbf{u} + (\mathbf{u}^L \cdot \nabla)\mathbf{u} + f\hat{\mathbf{k}} \times \mathbf{u}^L + \frac{\nabla p}{\rho_0} + u^{L,j}\nabla U^{S,j} = b\hat{\mathbf{k}} + v\nabla^2 \mathbf{u}$$

Acceleration Lagrangian Coriolis and Pressure Stokes Shear Buoyancy Dissipation
 $\partial_t \mathbf{u} + (\mathbf{u}^L \cdot \nabla)b = 0$ $\nabla \cdot \mathbf{u} = 0$
BC's: $W = 0$ at $z = 0, -1$
 $U_z = \frac{\tau}{\rho_0 v}$ at $z = 0$
Where, $\mathbf{u}^L = \mathbf{u} + \mathbf{U}^S$, and \mathbf{U}^S is prescribed

Scalings and Approach

Rescale equations

Non-dimensional number	Definition	Range of Values
Ro	$\frac{U^L}{fL}$	$(0,\infty)$
Ri	$\frac{N^2 H^2}{U^{L,2}}$	$[0,\infty)$
μ	$\frac{U^S}{U^L}$	$[0,\infty)$
λ	$\frac{H}{H^S}$	$(0,\infty)$
γ	$\frac{U_z^g}{U_z^L} \equiv \frac{M^2 H}{f U^L}$	[0,1]
Ek	$\frac{Ro}{Re} \equiv \frac{\nu}{fL^2}$	[0,1)

- Linear stability analysis
- Multiple scales of horizontal variation x, X, y, Y, t, T.
- Decompose into mean and perturbation:

$$\mathbf{u} = \overline{\mathbf{U}}(X, Y, z, T) + \mathbf{u}'(x, X, y, Y, z, t, T)$$

• Assume:

$$u' = \tilde{u}(z)e^{i(kx+ly+\sigma t)}$$

The Steady Background State

 $Ro >> 1, Ek > 0, \gamma = 0$ Weak Viscid No front Coriolis

Background Flow

$$\overline{\mathbf{U}} = z \quad \overline{W} = 0$$

$$\overline{P}_z = \overline{B} \rightarrow \text{Hydrostatic}$$

$$\overline{W} = 0$$

Reproduces "Classic" LC regime: Leibovich and Paolucci, 1980

The Steady Background State

The Steady Background State

Analytic Stability Criteria: Geostrophic Modes

- * Charney, Stern, and Pedlosky showed, that geostrophic instability exists only if one of the following is true:
- 1. Q_y changes sign in the interior of the domain.
- 2. Q_v is the opposite sign to U_z^L at the surface.
- 3. Q_v is the same sign to U_z^L at the bottom.
- 4. U_z^L has the same sign at the surface and bottom. Where Q is the quasi-geostrophic potential vorticity:

$$\overline{Q} = \nabla_{H}^{2} \overline{\psi} + \beta Y + \partial_{z} \left(\frac{f_{0}^{2}}{N^{2}} \overline{\psi}_{z}^{L} \right)$$

Analytic Stability Criteria: Symmetric Modes

* Hoskins (1974) showed that symmetric instability exists only if the Ertel potential vorticity (PV) is negative.

$$PV = \left(\nabla \times \overline{\mathbf{U}} + f\hat{\mathbf{k}}\right) \bullet \nabla \overline{B} < 0 \Longrightarrow SI$$

- * Proven for constant shear Stokes drift profiles as well.
- * The Stokes drift modifies the PV by changing the Eulerian flow that balances the pressure gradient:

$$\overline{\mathbf{U}}_{z} = -\frac{\nabla_{H}\overline{B}}{f} - \mathbf{U}_{z}^{S}$$

* Since the waves are assumed to be irrotational, the Stokes drift does not contribute directly to the PV

Cross front velocity for the fastest growing mode

Energetics

• Energetics are used to distinguish modes

$$\frac{De'}{D_t} = -\overline{\mathbf{u'w'}} \cdot \overline{\mathbf{U}}_z - \overline{\mathbf{u'w'}} \cdot \mathbf{U}_z^S - \overline{\mathbf{w'b'}} - \overline{\nabla_h} \cdot \mathbf{u'p'} - \overline{\partial_z(w'p')} + diss$$

ESP SSP BP PW

- BP dominant: instability extracts potential energy to RE-stratify the mixed layer (typical of geostrophic instabilities).
- SSP, ESP dominant: instability extracts kinetic energy (typical of SI, LC, KH)
- Hybrid modes with various mixed of energy production terms exist.

Why Linear Stability?

In general,
σ = F(Ri, μ, γ, λ, Ek, Ro, α)
Furthermore, the vertical structure, and dominant energy production terms are functions of the same non-dimensional numbers.

Hypercube Art: http://upload.wikimedia.org/wikipedia/commons/thumb/2/22/ Hypercube.svg/943px-Hypercube.svg.png

Stability Regimes

Nonlinear Simulations

- * National Center for Atmospheric Research (NCAR) LES model.
- * Configuration
 - * 500m (along front) x 8km (cross front) x 75m deep
 - * ~4m horizontal x ~1m vertical resolution.
 - * Periodic BC's in the horizontal (requires simulating 2 fronts)
 - * No flux on top and bottom
 - * No wind stress on top
- * Initialization
 - * $\mu \sim 2$, i.e. $U^{S} \sim 2U^{L} \sim 2U^{g}$ at the surface
 - * Ri = 0.5

- A "no [wind] stress" Ekman layer develops due the the surface geostrophic stress.
- SI develop only in regions of negative PV, and are stronger for more negative PV.
- SI restore the PV to zero by exchanging negative PV for positive PV in the pycnocline.

Fronts Slow LC

Horizontal slice of vertical velocity at ~ 5m deep.

HOT, LIGHT

COLD, DENSE

- LC develop fastest in regions without horizontal stratification
- Unstable stratification in central front yields convective KH rolls
- LC align with the Lagrangian shear direction

Conclusions and Future Work

- GI are only weakly affected by Stokes drift, but their instability depends on the Lagrangian, not just geostrophic shear.
- PV criteria for SI remains the same, however, the PV is altered by the Stokes drift such that PV<0 ≠Ri<1.
 - Observational estimates of PV must be based on Eulerian shear if SI are of interest.
- LC dominance requires: Strong Stokes shear, weak stratification, AND weak geostrophic shear (weak front).
- Near surface effects of the Stokes drift on the PV are noticeable, but generally dominated by LC or Ekman effects.

Future Work:

- More extensive analysis of LES results
 - Explore the onset, and then decay of KH instability
 - Diagnose from LES energetics why LC are suppressed
- Apply linear stability results to observations:
 - Where do we expect to find what types of instabilities, and do we really see them there?