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Groups of surface gravity waves induce horizontally varying Stokes drift that drives
convergence of water ahead of the group and divergence behind. The mass flux divergence
associated with spatially variable Stokes drift pumps water downwards in front of the
group, and upwards in the rear. This “Stokes pumping” creates a deep, Eulerian return
flow that sets the isopycnals below the wave group in motion, and generates a trailing
wake of internal gravity waves. We compute the energy flux from surface to internal
waves by finding solutions of the wave-averaged Boussinesq equations in two (2D) and
three dimensions (3D) forced by Stokes pumping at the surface. The 2D case is distinct
from the 3D case in that the stratification must be very strong, or the surface waves very
slow for any internal wave (IW) radiation at all. On the other hand, in 3D, IW radiation
always occurs, but with a larger energy flux as the stratification and surface wave (SW)
amplitude increase, or as the SW period is shorter. Specifically, the energy flux from SWs
to IWs varies as the fourth power of the SW amplitude and of the buoyancy frequency,
and is inversely proportional to the fifth power of the SW period. Using parameters
typical of short period swell (e.g., 8 second SW period with 1m amplitude) we find that
the energy flux is small compared to both the total energy in a typical SW group and
compared to the total IW energy. Therefore this coupling between SWs and IWs is not a
significant sink of energy for the SWs nor a source for IWs. In an extreme case (e.g. 4 m
amplitude 20 s period SWs) this coupling is a significant source of energy for IWs with
frequency close to the buoyancy frequency.

1. Introduction

Surface gravity waves induce a horizontal Lagrangian mass flux known as the Stokes
drift. The Stokes drift is proportional to the square of the amplitude of the waves and
thus a slowly varying wave group has a spatially variable horizontal mass transport. The
Stokes drift vanishes, as the waves do, at the edges of the group, thereby inducing a
horizontal divergence of the vertically integrated Lagrangian transport. The converging
Lagrangian mass flux at the front of the group drives water downward, while divergent
Lagrangian mass flux at the rear of the group lifts it up. This “Stokes pumping” drives
a deep Eulerian return flow, first shown by Longuet-Higgins & Stewart (1964), discussed
further by McIntyre (1981) and van den Bremer & Taylor (2015), and depicted in figure
1(a).

The deep return flow beneath a SW group in an unstratified fluid is shown in figure 1(a).
The positive momentum contained in the vertically integrated Stokes drift is balanced by
the momentum in the deep Eulerian return flow so that the total momentum in a large
volume is zero (McIntyre 1981). The structure of the deep return flow can be understood
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Figure 1. (a) The stream function of the deep return flow beneath the Gaussian SW group in
(A 1) with an unstratified interior. (b) Constant N = 7⇥10�3 s�1. The dashed contours indicate
negative values of the stream function, and the contour interval is 0.05m2s�1. In both panels,
the SW group is moving to the right with group speed c/2 with c =

p
g/k. The SW amplitude

is exaggerated by orders of magnitude in order to visualize the group; in this illustration of a
“two-dimensional” group `

x

/d = 0.07 and `

y

= 1 where `

x

and `

y

are the horizontal length
scales of the Gaussian packet in (A 1).

with an electrostatic analogy in which the streamlines are lines of force induced by the
dipolar Stokes pumping, essentially at the surface z = 0. Consequently, in the two-
dimensional (2D) case, the velocity of the deep return flow decays slowly with depth,
z, as z�2 below the group so that the bottom at z = �d has important e↵ects even in
very deep water. In the three-dimensional (3D) case, some of the return flow may go
around rather than underneath the SWs. Thus in the 3D case the decay of deep currents
is faster, but still algebraic as z�3(van den Bremer & Taylor 2015).

Here we investigate the e↵ects of stratification on the structure of the Eulerian-mean
return flow beneath a group of SWs. As anticipated by McIntyre (1981), stable stratifi-
cation greatly modifies the form of the return flow by exciting internal gravity waves as
the SW group passes above: see figure 1(b).

To make a direct comparison with the unstratified return flow in figure 1(a) we have
also shown the stream function in figure 1(b). However, with typical oceanic stratification,
the 2D and 3D situations are strikingly di↵erent. In the 2D case, the phase speed of the
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IWs is necessarily in the same direction as that of SW propagation: in figure 1(b) the
x-phase speed of the IW train is equal to the SW group velocity, c/2 with c =

p
g/k. The

group speed of swell with typical wavelengths of 100meters or greater exceeds 5ms�1. But
Chelton et al. (1998) show that the IW phase speed in the ocean never exceeds 3.2ms�1.
Thus the radiation of IWs by strictly 2D SWs — the situation shown in figure 1(b) —
does not occur in Earth’s ocean. In other words, ocean stratification is so weak that in
the 2D case IWs cannot keep up with swell and there is no radiation. But in the 3D case,
in which the SW packet has finite extent in the spanwise (y) direction, radiated IWs can
propagate obliquely to the direction of propagation (the x-axis) of the SW group. With
oblique propagation the phase speed of IWs along the x-axis can equal c/2 even in a
weakly stratified ocean. Thus IW radiation from SW groups is much more e�cient in 3D
than in 2D.

The coupling of SWs and IWs has been explored previously in oceanography as a
possible mechanism for energizing the ocean IW field. The recent paper by Olbers &
Eden (2016) reviews this oceanographic literature, starting with the first estimates of
the strength of surface-wave driving of IWs (Watson, West & Cohen 1976; Olbers &
Herterich 1979). These estimates are based on resonant triad theory and employ a spec-
tral characterization of the SW field. But resonant triad theory does not directly reveal
the e↵ect of stratification on the situation in figure 1(b) in which the deep-return flow
associated with a narrow-band group of ocean swell shakes the deep, stable stratification
of the ocean.

However there is a connection between IW radiation from the SW group in figure 1(b)
and resonant triad theory: radiation of IWs requires that the phase speed of the IW must
match the speed of the forcing, which is the group speed of the SWs. This condition is
a special case of triad resonance in which the SW group constitutes two members of the
triad with close wavenumbers k and k + �k, and the radiated IW is the third member of
the triad with wavenumber �k ⌧ k. In this paper we are isolating this particular triad
interaction as it applies directly to situation in figure 1(b) and showing the connection
to Stokes drift and the associated deep return flow.

In section 2 we recall the first order in wave amplitude solution in terms of the standard
velocity potential; considering the second order in wave amplitude, we perform a phase
average to obtain the IW equation forced by the divergence of the mean wave momentum
at the surface. In section 3 we solve the surface forced IW equation to obtain the wave-
averaged vertical velocity and pressure. In section 4 we obtain an expression for the
energy flux from SWs to IWs; we show that our estimate of energy flux is in quantitative
agreement with the resonant triad estimate of Olbers & Eden (2016). In section 5 we
discuss the 2D limit of the 3D energy flux solution. Section 6 is the discussion and
conclusion.

2. Formulation

We decompose the density as

⇢ = ⇢
0


1 +

1

g

✓Z
0

z

N2(z0)dz0 � b

◆�
, (2.1)

where ⇢
0

is the average density, g is the gravitational acceleration acting in the negative z-
direction, N2(z) is the buoyancy frequency and b(x, y, z, t) is the buoyancy (e.g., Phillips
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1977). The Boussinesq equations are

u

t

+ u ·ru + rp = bẑ , (2.2)

b
t

+ u ·rb + wN2 = 0 , (2.3)

r·u = 0 , (2.4)

where the velocity is u = ux̂ + vŷ + wẑ, and p is the non-hydrostatic constituent of the
pressure divided by the average density ⇢

0

.
We denote the magnitude of the free-surface displacement by a

max

, the wavenumber
of the primary SW by k and the horizontal length scale of the surface-wave group in the
x-direction by `

x

. Using these scales the wave steepness and scale separation parameters
are

✏
def

= a
max

k , and µ
def

=
1

k`
x

. (2.5)

We assume that ✏ and µ are both small and we neglect the direct e↵ects of stratification
in the shallow wave zone where kz is order one. This assumption is justified provided
that the wave frequency

p
gk is much greater than N(z) in this region. In the along-crest

(y) direction, the SW group has length `
y

; we treat `
y

/`
x

as order one.
Denoting the free-surface displacement by h(x, y, t), the surface boundary conditions,

correct to second order in wave steepness ✏, are

at z = 0: h
t

+ (uh)
x

+ (vh)
y

= w , (2.6)

and

at z = 0: p + hp
z

= gh + N2

1

2

h2 , (2.7)

where ( )
x

indicates an x-derivative, and similarly for y, z, and t derivatives. In (2.6)
and (2.7) we have transferred the surface boundary conditions from the moving free
surface z = h to the flat surface z = 0 using the Stokes expansion. The bottom boundary
condition is w(x, y,�d, t) = 0. We confine attention to deep-water waves, kd � 1, so
that the bottom boundary condition is important only for the deep return flow beneath
the SW group.

Scaling time with the wave frequency
p

gk and length with the wavenumber k sets
g ! 1. One then expands all variables in powers of wave steepness ✏; for example

p = ✏p
1

+ ✏2p
2

+ · · · (2.8)

While we are guided by this scheme when choosing to neglect or retain terms, for clarity
we develop the expansion using the original dimensional variables.

2.1. The solution at first order

In the first-order equations we neglect the small buoyancy force b
1

ẑ on the right of the
momentum equation (2.2). With this approximation the classic first-order solution is
irrotational and is expressed using the familiar velocity potential �(x, y, z, t):

u

1

= r� , and p
1

= ��
t

. (2.9)

The problem then reduces to the solution of the 3D Laplace equation �
xx

+�
yy

+�
zz

= 0
with the surface boundary condition �

tt

+g�
z

= 0 at z = 0 and the deep-water condition
that �(x, y,�1, t) = 0. Correct to leading order in the scale-separation parameter µ, the
first-order solution for a SW group is

h
1

= 1

2

a(x̃, y, 0) exp
⇥
ik (x � ct)

⇤
+ c.c. (2.10)

� = � 1

2

ic a(x̃, y, z) exp
⇥
ik (x � ct) + kz

⇤
+ c.c. , (2.11)
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where a(x̃, y, z) is the slowly varying envelope, c =
p

g/k is the surface-wave phase speed,
c.c. denotes the complex conjugate, and

x̃
def

= x � 1

2

ct , (2.12)

is the wave-group coordinate; c/2 in (2.12) is the deep-water group velocity. We neglect
dispersive spreading of the group (see van den Bremer & Taylor 2016).

2.2. Quadratic properties of the first-order solution

At next order we need several quadratic properties of the first-order solution, some of
which are expressed most easily using the first-order wave displacement ⇠

1

defined via

⇠

1t

= u

1

= r� . (2.13)

At z = 0 the vertical displacement ⇣
1

(x, y, z, t) = ẑ · ⇠
1

is the same as the first-order
displacement of the free surface h

1

(x, y, t); the dynamically negligible buoyancy pertur-
bation in the wave zone is diagnosed as b

1

= �N2⇣
1

.
Denoting a running phase average over the fast oscillation of the primary wave by an

overbar, the Stokes drift in the x-direction is

uS

def

= ⇠

1

·ru
1

= c k2|a|2e2kz . (2.14)

The mean wave momentum per unit area in the x-direction is ⇢
0

M , where

M
def

= u
1

⇣
1

��
0

= 1

2

ck |a|2 , (2.15)

with
��
0

indicating evaluation at z = 0. The identity

M =

Z
0

�1
uS dz (2.16)

shows that uS can be interpreted as the vertical distribution of the mean wave momentum
(e.g., Phillips 1977). The chain of identities

⇣
1

p
1z

= �⇣
1

w
1t

= w2

1

= 1

2

|u
1

|2 = 1

2

cuS (2.17)

is useful at next order. The identities in (2.17) express all important wave-averaged
quantities in terms of the Stokes drift in (2.14).

2.3. The second-order wave-averaged equations of motion

To write the phase-averaged second-order equations compactly we introduce the Bernoulli
function

$
def

= p̄
2

+ 1

2

|u
1

|2 . (2.18)

Using $, the phase-averaged second-order equations are

ū

2t

+ r$ = b̄
2

ẑ , (2.19)

b̄
2t

+ w
2

N2 = 0 , (2.20)

r·ū
2

= 0 . (2.21)

We have neglected the term u
1

·rb
1

in (2.20) because this term decays exponentially with
depth over a layer of depth (2k)�1. This term is important for mixed layer dynamics,
but not for the deep return flow or wake of radiated IWs. Although the buoyancy force
bẑ has a negligible e↵ect on the SW group it does a↵ect the deep flow and therefore it
is essential to retain b̄

2

ẑ in (2.19). Because of the buoyancy force, the deep flow beneath
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the SW group is not irrotational and thus it is not possible to use a velocity potential to
represent the solution of (2.19) through (2.21). Instead the system can be combined to
obtain the IW equation for the second-order wave-averaged vertical velocity

⇥
@2

t

�
@2

x

+ @2

y

+ @2

z

�
+ N2

�
@2

x

+ @2

y

�⇤
w̄

2

= 0 . (2.22)

Combining (2.20) with the vertical part of (2.19), the pressure $ can be expressed in
terms of the second-order vertical velocity as

$
zt

= �(@2

t

+ N2)w̄
2

. (2.23)

The wave-averaged second-order surface boundary conditions following from (2.6) and
(2.7) are

at z = 0: h̄
2t

+ M
x

= w
2

, (2.24)

and

at z = 0: $ = gh̄
2

+ N2

1

2

h2

1

. (2.25)

Identity (2.17) has been used to express the surface boundary condition (2.25) in terms
of $. Following earlier authors (e.g. Longuet-Higgins & Stewart 1964; van den Bremer &
Taylor 2015), we make the “rigid-lid approximation” by neglecting h̄

2t

in (2.24) so that
the surface boundary condition simplifies to

at z = 0: w̄
2

⇡ M
x

. (2.26)

Note that neglecting the mean sea surface displacement, h̄
2

, is only valid in deep water
(see van den Bremer & Taylor 2015). If required, the mean surface displacement h̄

2

can
be diagnosed from (2.25) as h̄

2

⇡ g�1$|
0

. The bottom boundary condition is w̄
2

= 0.

3. Radiating solutions of the second-order wave-averaged equations

Solving the IW equation (2.22) for w̄
2

, we encounter a well-known issue in radiation
problems: there are zero-denominators related to the resonance condition that the IW
phase speed in the x-direction must be equal to the SW group speed c/2. The physical
resolution of this mathematical problem is the correct application of the causality condi-
tion, also known as the Sommerfeld radiation condition, that the internal gravity waves
are outgoing from the SW packet. To implement the Sommerfeld condition, we follow
the method of Lighthill (1967, 1978) and assume that the SW group has been growing
very slowly from t = �1 at a rate �. The quasi-steady solution is found by taking the
limit � ! 0 though positive real values. Thus the boundary condition (2.26) is modified
to

at z = 0: w̄
2

= e�tM
x

, (3.1)

with � > 0.

3.1. Projection onto vertical modes and Fourier transform

With uniform N we express the solution of the IW equation (2.22) and the pressure
equation (2.23) as a sum of orthonormal vertical modes:

w̄
2

=
1X

n=1

w
n

(x, y, t)
p

2 sin m
n

z , and $ =
1X

n=1

$
n

(x, y, t)
p

2 cos m
n

z , (3.2)

where the vertical wavenumber is

m
n

def

= n⇡/d . (3.3)
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The modal amplitudes in (3.2) are given by

(w
n

,$
n

) =
1

d

Z
0

�d

(w,$)
p

2 (sin m
n

z, cos m
n

z) dz . (3.4)

Projecting the IW equation (2.22) onto the sine modes we obtain

⇥
@2

t

�
@2

x

+ @2

y

� m2

n

�
+ N2

�
@2

x

+ @2

y

�⇤
w

n

=

p
2m

n

d
@2

t

@
x

e�tM . (3.5)

The forcing on the right hand side of (3.5) comes from handling the z-derivatives in
(2.22) with integration by parts.

Moving with the SW group, we look for a solution of (3.5) of the form e�tw
n

(x̃, y)
where x̃ is the group coordinate defined in (2.12). Using the Fourier transform

ŵ
n

(q, s)
def

=

ZZ
e�i(qx̃+sy)w

n

(x̃, y) dx̃dy , (3.6)

the solution of (3.5) is

ŵ
n

= �
p

2m
n

d

iq (q + i⌘)2 M̂(q, s)

(q + i⌘)2 (q2 + s2 + m2

n

) � q2

max

(q2 + s2)
, (3.7)

where

q
max

def

= 2N/c , and ⌘
def

= 2�/c . (3.8)

Projecting the pressure equation (2.23) onto the sine basis functions, and then Fourier
transforming, one finds that the modal amplitudes of the pressure field in (3.2) are

$̂
n

=
ic

2m
n

q2

max

� (q + i⌘)2

(q + i⌘)
ŵ

n

. (3.9)

The inverse Fourier transform of (3.7)

w
n

=

ZZ 1

�1
ŵ

n

ei(qx̃+sy)

dqds

(2⇡)2
, (3.10)

=

ZZ

(q,s)>0

cos(sy)<[ŵ
n

eiqx̃]dqds . (3.11)

In passing from (3.10) to (3.11) we have exploited the symmetries ŵ
n

(q, s) = ŵ
n

(q,�s)
and ŵ

n

(q, s) = ŵ?
n

(�q, s), where ? indicates the complex conjugate, to write the inverse
Fourier transform as an integral over the first quarter of the wavenumber plane. Here we
have assumed that M̂ has these same symmetries.

The vertical velocity is obtained by numerical integration of (3.11) and for illustration
we use the typical SW and stratification parameters given in table 1, and choose � =
3.1 ⇥ 10�5s�1 for our slow growth parameter. The horizontal structure of the first four
vertical modes is shown in figure 2. Each mode shows a wake of IWs trailing behind
the SW group, which is centered at the origin. Figure 3 shows the full vertical velocity
for IWs radiated from a SW group passing over a uniformly stratified ocean. Figure 3
shows a strong Eulerian return flow in the forcing region with weaker vertical velocities
associated with IWs trailing behind the forcing region. The solution is dominated by the
first vertical mode.

3.2. The singular curves

Returning to (3.7), we see the problem of zero divisors if we set ⌘ = 0. With small non-
zero ⌘ the solution is concentrated in wavenumber space on the “singular curve” where
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Table 1. Numerical values characteristic of swell and stratification; g = 9.81ms�2 and
⇢

0

= 1000kg m�3. Here we have picked parameters for short period, 1m amplitude swell as
a typical example, and long period 4m amplitude swell as an example of extreme forcing. The
depth averaged stratification, N , is consistent with the phase speed of the first baroclinic mode
for a depth d = 2000m. Figure 5 of Chelton et al. (1998) shows that the average phase speed
of the first baroclinic mode varies with latitude between about 1.5ms�1 to 3ms�1. The surface
group length, `

x

, is based on the assumption that a group is comprised of n

SW

consecutive
waves that are at least half as high as the tallest in the group. While observations of wave
group statistics in the North Sea (Battjes & Van Vledder 1984, figure 3b) and in coastal regions
(Elgar et al. 1984) show that groups of one or two waves are far more likely, five-wave groups
are possible.

Parameter Typical Forcing Extreme Forcing

wavenumber k 2⇡/(100m) 2⇡/(625m)

frequency
p
gk 2⇡/(8 s) 2⇡/(20 s)

phase speed c =
p

g/k, 12.5ms�1 31ms�1

wave amplitude a

max

1m 4m

number of waves per group n

SW

5 5

group length `

x

= ⇡n

SW

/k 250 m 1.56 km

group width `

y

3`
x

= 750 m 3`
x

= 4.69 km

depth d 2000 m 2000 m

depth averaged buoyancy frequency N 2⇡/(2000 s) 2⇡/(1333 s)

q

max

= 2N/c 2⇡/(12.5 km) 2⇡/(20.8 km)

(SW group speed)/(IW phase speed) m
1⇤ = c⇡/2Nd 3.125 5.2

SW slope ✏ = a

max

k 0.0625 0.064

scale separation µ = (k`
x

)�1 0.06 0.06

the denominator of (3.7) is close to zero. These curves are shown in the first quadrant of
the (q, s)-plane in figure 4 for a few values of stratification, depth, and SW group speed.
The singular curves are defined by the zeros of the function

�(q, s)
def

= q � q
max

s
q2 + s2

q2 + s2 + m2

n

. (3.12)

The structure of these curves depends on the crucial non-dimensional parameter

m
n⇤

def

=
m

n

q
max

=
cn⇡

2Nd
, (3.13)

which is the ratio of the SW group speed to the approximate IW phase speed of vertical
mode n. Figure 4 shows that the case where m

n⇤  1 is very di↵erent from the case
m

n⇤ > 1. In particular, in 2D (s = 0), only cases with m
n⇤ < 1 will radiate IWs, because

only those singular curves intersect the q-axis. Further discussion of the 2D problem is
in section 5. The solution shown in figures 2 and 3 has m

n⇤ > 1 for all vertical mode
numbers n.
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Figure 2. Common logarithm of |w
n

| for the first four modes. Dashed contours indicate negative
vertical velocities. The SW group is centered at the origin. The SW and stratification parameters
are given for the typical case in table 1. The thin black line is the contour where the vertical
velocity vanishes. The red dash-dot line is the theoretical prediction for maximum wake angle
given by (3.18).

Using the definition of q
max

, the condition �(q, s) = 0 can be re-arranged as

c

2
=

N

q

s
q2 + s2

q2 + s2 + m2

n

. (3.14)

Recalling the IW dispersion relation for vertical mode n, namely !2 = N2(q2 +s2)/(q2 +
s2+m2

n

), we identify the right hand side of (3.14) as the IW phase speed in the x-direction.
Thus the singular curve (3.14) is the resonance condition that the x-phase speed of the
IWs matches the group velocity c/2 of the SWs. Combining the internal-wave dispersion
relation and (3.14) we see that

!

N
=

q

q
max

. (3.15)

This relation shows there is an upper bound on the values of q relevant for IW radiation:
because ! < N , wavenumbers with q > q

max

cannot radiate.

3.3. The wake angle

The stratification in the ocean is not su�ciently strong to support IWs that propagate at
the SW group speed. However, if the radiated IWs propagate obliquely to the direction
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Figure 3. Common logarithm of |w̄
2

|. The SW group is centered at the origin, and propagates
in the positive x-direction. Dashed contours indicate negative vertical velocities. The typical
SW and stratification parameters used are given in table 1. The solution shown is a numerical
solution of (3.11) with � = 3.1 ⇥ 10�5s�1, with 200 vertical modes near the forcing region
[�0.1q

max

x : 0.1q
max

x], and 20 vertical modes in the rest of the domain.

mn∗
=
3

mn∗
= 1.5

mn∗
= 1

mn∗
=
0.7

5

m
n∗

=
0.
5

0 0.2 0.4 0.6 0.8 1
q∗

0

0.5

1

1.5

2

2.5

3

3.5

4

s ∗

Figure 4. The singular curves defined by �(q, s) = 0 in the first quadrant of the (q⇤, s⇤)–plane,
where q⇤ = q/q

max

, s⇤ = s/q

max

, and m

n⇤ = m

n

/q

max

. If m
n⇤ � 1 the curve passes through the

origin. The curve for m
n⇤ = 1 is the thick black line.

of SW group propagation then the point of intersection between the IW crest and the
SW group can move with the SW group speed. To illustrate this, we will put ourselves in
the reference frame moving with the SW group. Then the surrounding water is flowing
backward at speed c/2. As shown in figure 5, the component of this backward flow that
is parallel to the IW phase velocity must be equal in magnitude to the IW phase velocity.
This geometric condition recovers the resonance condition
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�
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internal wave crest
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ern
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wav

e cre
st

!p
q2 + s2

Figure 5. Schematic of the IW wake in the reference frame where the SW group is stationary.
The surrounding water rushes backward (to the left) at the group speed (c/2). The IW crest
intersects the x-axis at and angle ✓

n

, while the phase velocity of the IW, which is perpendicular
to its crest, is at an angle of �

n

= ⇡/2 � ✓

n

to the x-axis. The condition in (3.16) is that the
IW crest is stationary because the advance of phase normal to the crest is halted by the normal
component, (c/2) cos�

n

, of the water velocity.

c

2
cos�

n

=
!p

q2 + s2

. (3.16)

The wake angle ✓
n

is related to the direction of the phase velocity, �
n

, by ✓
n

= ⇡/2��
n

,
so that cos�

n

= sin ✓
n

. Therefore the wake angle is given by

sin ✓
n

=
2N

c
p

q2 + s2 + m2

n

, (3.17)

where we have used the IW dispersion relation for !(q, s). To find the widest possible
wake angle ✓

n

, we maximize the right hand side of (3.17) over all wavenumbers by taking
q = s = 0 to find

max
8(q,s)

(sin ✓
n

) =
2N

cm
n

=
2Nd

n⇡c
=

1

m
n⇤

. (3.18)

The maximum wake angle is determined by the stratification, depth, and SW group
speed. The first four modal constituents of vertical velocity w

n

(x̃, y) are shown in figure
2. The dashed red line at the angle determined by (3.18) is parallel to the zero contour
(the solid, black line), indicating that wake angle predicted by (3.18) is accurate. (Recall
in figure 2 that m

n⇤ > 1 for all n.)
The maximum wake angle in (3.17) is undefined if m

n⇤ < 1. This is the case if the
stratification is strong so the fastest radiated IWs are moving at the SW group speed.
Choosing even smaller values of m

n⇤ (larger N , larger d, or smaller c/2) does not change
the wake angle beyond ✓

n

= ⇡/2.
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4. Energy flux into the IW field

The radiation of IWs from a surface-wave group raises two questions: (1) Is the radia-
tion of IWs a significant energy sink for the SWs? and (2) Is this radiation a significant
source of energy for the IWs? In this section we compute the energy flux, and answer
these questions with: (1) no and (2) probably no, except maybe for strong stratification
and large amplitude SWs.

4.1. The radiation integral

From (2.19) through (2.21) we obtain the second-order energy conservation equation

@
t

1

2

�
|u

2

|2 + N�2 b̄2

2

�
+ r·

�
$u

2

�
= 0 . (4.1)

Thus the vertical component of the energy flux at the surface is $w̄
2

��
0

; the total flux of
energy out of the SW group and into the IW field in Watts is therefore ⇢

0

J where

J
def

=

ZZ
M

x

$
��
0

dxdy . (4.2)

In (4.2) the surface boundary condition in (2.26) has been used for w̄
2

|
0

. Using the modal
expansion for $ in (3.2) the right hand side of (4.2) is

J =
1X

n=1

ZZ 1

�1
M

x

$
n

��
0

dxdy

| {z }
def

= J

n

, (4.3)

where J
n

is the energy flux into vertical mode n.
With Parseval’s theorem, we can express J

n

in terms of the Fourier transforms M̂ and
$̂

n

as

J
n

=

ZZ 1

�1
iqM̂$̂?

n

��
0

dqds

(2⇡)2
. (4.4)

The Fourier transform $̂
n

is given by (3.9) and thus the energy flux into vertical mode
n is ⇢

0

J
n

where

J
n

=
c

2

p
2

d

ZZ 1

�1

iq2

h
q2

max

� (q � i⌘)2
i
(q + i⌘) |M̂ |2

(q � i⌘)2 (q2 + s2 + m2

n

) � q2

max

(q2 + s2)

dqds

(2⇡)2
. (4.5)

It is helpful to define

cos2 #
n

=
m2

n

q2 + s2 + m2

n

, sin2 #
n

=
q2 + s2

q2 + s2 + m2

n

, (4.6)

so that the partial fraction decomposition of (4.5) can be written as

J
n

=
c

2

p
2

d

ZZ 1

�1

iq2|M̂ |2

q2 + s2 + m2

n
q + i⌘ � 1

2

q2

max

cos2 #
n

q � i⌘ + q
max

sin#
n

� 1

2

q2

max

cos2 #
n

q � i⌘ � q
max

sin#
n

�
dqds

(2⇡)2
.

(4.7)

We can drop the term q + i⌘ in the square bracket above: the q is an odd function that
integrates to zero and the i⌘ is a non-singular term that vanishes in the limit ⌘ ! 0. The
remaining terms in the integral are even in both q and s and taking advantage of these
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symmetries we can restrict the integration to the first quadrant to obtain

J
n

= � c

2

4⇡q2

max

m2

np
2d

ZZ

(q,s)>0

q2|M̂ |2

(q2 + s2 + m2

n

)2
1

⇡

⌘

(q � q
max

sin#
n

)2 + ⌘2

dqds

(2⇡)2
. (4.8)

Taking the limit ⌘ ! 0 in (4.8) using the result in appendix B, we find that the double
integral is concentrated on the singular curves given by the zeros of �(q, s) in (3.12), and
shown in figure 4. Thus, after the limit ⌘ ! 0 the double integral in (4.8) is reduced to
a single integral with respect to q:

J
n

= � c

2

1p
2⇡d

Z
q

max

q

min

q2

��M̂
�
q, s

n

(q)
���2
s

q2

max

� q2

m2

n

� q2

max

+ q2

dq . (4.9)

In the second argument of M̂ in (4.9), the singular curves defined by �(s, q) = 0, with
�(s, q) in (3.12), are parameterized by q as s = s

n

(q), where

s
n

(q)
def

= q

s
m2

n

� q2

max

+ q2

q2

max

� q2

. (4.10)

The upper limit of integration in (4.9) is q
max

= 2N/c and the lower limit is

q
min

def

=

(
0 , if q

max

 m
n

;p
q2

max

� m2

n

, if q
max

� m
n

.
(4.11)

The definition of q
min

above corresponds to the distinction between the curves in figure 4
corresponding to m

n⇤ � 1, which pass through the origin, and those curves with m
n⇤ < 1

which cross the q axis at
p

q2

max

� m2

n

. Both types of curves asymptote to s = 1 as
q ! q

max

: this asymptote corresponds to the upper limit of integration in (4.9). In
physical terms there is a “cut-o↵” wavenumber q

max

because IWs have frequencies less
than N : wavenumbers q > q

max

correspond the non-existent IWs with frequencies greater
than N .

The “radiation integral” on the right of (4.9) is our most general expression for the en-
ergy lost to mode-n internal gravity waves from the SW group. We make approximations
to (4.9) assuming realistic SW and stratification parameters in section 4.3.

4.2. Energy transfer between a Gaussian SW group and the IW wake

To make a simple estimate of the energy loss from surface gravity waves we adopt the
Gaussian model from appendix A and use numerical values in table 1. Since energy in
the SWs is partitioned equally between kinetic and potential, the energy density of a
SW train is given by gh2

1

(Phillips 1977). Then using h
1

in (2.10) and the Gaussian wave
envelope in (A 1) the total energy of the packet is ⇢

0

E, in Joules, where

E =

ZZ
gh2

1

dxdy =
⇡

2
ga2

max

`
x

`
y

. (4.12)

Next we non-dimensionalize (4.9) as before using q⇤ = q/q
max

and m
n⇤ = m

n

/q
max

,
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and replace |M̂ |2 by the Gaussian expression (A 3). Using c2k = g, we find

J
n

= � q3

max

2
p

2⇡cd

⇣⇡
2

ga2

max

`
x

`
y

⌘
2

⇥

Z
1

q

min⇤

q2

⇤ exp

"
� 1

2

(q
max

`
x

)2q2

⇤

 
1 +

m2

n⇤ � 1 + q2

⇤
1 � q2

⇤

`2
y

`2
x

!#s
1 � q2

⇤
m2

n⇤ � 1 + q2

⇤
dq⇤

| {z }
J

n

(q

max

`

x

,`

y

/`

x

,m

n⇤)

, (4.13)

where

q
min⇤ =

(p
1 � m2

n⇤ , if m
n⇤ < 1;

0 , if m
n⇤ � 1.

(4.14)

Using the values in table 1, q
min⇤ = 0.

Now we consider the slow time evolution of the SWs and assume that only the IW
radiation a↵ects the energy tendency:

E
t

=
1X

n=1

J
n

, (4.15)

= � q3

max

2
p

2⇡cd

1X

n=1

J
n

| {z }
def

= ↵

⇣⇡
2

ga2

max

`
x

`
y

⌘
2

| {z }
E

2

. (4.16)

In (4.16) we have expressed the energy flux in terms of the energy in the wave group,
and the factor ↵. We assume that ↵ is constant as E / a2

max

slowly decreases due to
radiative damping. Then the solution of the di↵erential equation (4.16) is

E =
E

0

1 + ↵E
0

t
, (4.17)

where E
0

is the initial energy corresponding to the initial a
max

. Therefore the half-life of
a group of SWs is given by

t
1/2

=
1

↵E
0

=
c4dp

2gN3a2

max

`
x

`
y

P1
n=1

J
n

= � E
0P1

n=1

J
n

, (4.18)

where a
max

and J
n

above are evaluated at t = 0. Equation (4.18) highlights that faster
waves in a deeper ocean survive longer, while larger waves, larger wave groups, and
stronger stratification damp the wave group more quickly.

Computing the energy flux from SWs to IWs by numerical evaluation of the integral
for J

n

in (4.13) we find that the radiated energy into the first 5 vertical modes is approx-
imately 0.2 W for typical forcing and approximately 100 W for extreme forcing in table
1. In the extreme forcing case, it would take over 100, 000 days (and much more for the
typical case) for the SWs to lose half their energy. In this time the wave group would
have traveled more than 1, 000 times around the Earth. We can safely say that this is a
small loss of energy from the SWs.

Might this small energy flux be a significant energy source for the IW field? The ocean
IW spectrum has two peaks: the near-inertial spectral peak and a secondary peak at
frequencies close to the buoyancy frequency N (Pinkel 1975). As Olbers & Eden (2016)
note, the energy flux from SWs to IWs is small compared to the energy flux from the
wind into near-inertial waves. However, figure 6 (which is discussed in more detail in
section 4.3) shows that the majority of the energy radiated from SWs goes into near–
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N IWs. The amplitude of the near-N spectral peak is much smaller than that of the
near inertial spectral peak, so the energy flux estimated above may be significant for
near–N IWs while also negligible compared to the energy flux due to wind forcing.
From figure 6 of Pinkel (1975) we estimate this peak in isotherm displacement squared

⇣ 02 to be 0.5 m2(cycles per hour)
�1

in amplitude, and 2 cycles per hour wide. Then we
can estimate the near-N IW energy density as ⇢N2

pyc

⇣ 02d, where N
pyc

= 2⇡/(900 s) is
a typical stratification in the pycnocline. The power density of IW radiation from SW
forcing is ⇢

0

P
5

n=1

J
n

/`
x

`
y

. Then a timescale of forcing, ⌧ , can be obtained by dividing
observations of energy density by the power density to find ⌧ ⇡ 500 days in the typical
case and ⌧ ⇡ 1 day in the extreme case. This implies that one day of extreme forcing by
SW groups with these parameters would produce the measured amount of near-N IW
energy. Therefore, this mechanism is likely not a source of near-N IWs under typical SW
forcing, but may be significant during extreme forcing.

4.3. The limit of weak stratification and fast SWs

Figure 2 of Chelton et al. (1998), shows a global map of the fastest possible IW phase

speed based on observations of the vertically integrated stratification,
R

0

�d

N(z)dz, and
assuming hydrostatic IWs. The hydrostatic approximation results in an overestimate of
the IW phase speed, so these estimates are used as an upper bound. The map shows that
IW phase speeds never exceed 3.2ms�1, and generally range from 1 to 3ms�1 for the first
baroclinic mode. If we consider swell with periods of 8s or larger, then

m
n⇤ =

cn⇡

2Nd
& 2 . (4.19)

In other words, for SWs with periods of 8s or longer, the SW group speed is always
significantly greater than the IW phase speed. In this sense the ocean stratification is
weak, IWs are slow, and the SWs are fast. Thus the relevant case in (4.14) is m

n⇤ > 1
and q

min⇤ = 0. The other case, m
n⇤ < 1 and q

min⇤ =
p

1 � m2

n⇤, is not relevant for
Earth’s oceans.

Equation (4.13) is opaque: the dependence of J
n

on key parameters is buried inside
a di�cult integral. We will exploit the weak stratification and fast SWs to approximate
(4.13), and reveal the dependence of J

n

on the stratification and SW parameters. After
systematic simplification of the integrand in (4.13) assuming m2

n⇤ � 1, and `
y

> `
x

, we
have

J
n

⇡ � 1

n

p
2

c
(Na

max

)4 (k`
x

`
y

)2
Z

1

0

q2

⇤ exp

"
� q2

⇤
1 � q2

⇤

(m
n

`
y

)2

2

#
p

1 � q2

⇤ dq⇤

| {z }
K

n

(m

n

`

y

)

. (4.20)

Above, K
n

is an m2

n⇤ � 1 approximation to the integral m
n⇤Jn

in (4.13). Using the
typical wave and stratification parameters assumed in table 1, the approximate integrand
in (4.20), is very close to the exact integrand in (4.13): see Figure 6. Note that while the
exact J

n

in (4.13) depends on three parameters, the approximation K
n

in (4.20) contains
only the single parameter m

n

`
y

, which is equal to the product of the three parameters
in J

n

. Therefore

J ⇡ �
p

2

c
(Na

max

)4 (k`
x

`
y

)2
1X

n=1

1

n
K

n

(m
n

`
y

) , (4.21)

provided that m2

n⇤ � 1 and `
y

/`
x

> 1.
Figure 7 shows the dependence of the integral K

n

on the control parameter m
n

`
y

.
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Figure 6. The energy flux spectral density for the typical SW and stratification parameters
in table 1. The solid lines show the exact integrand in (4.13), and the dashed lines show the
approximation in (4.20) for the first three vertical modes as a function of normalized horizontal
wavenumber, q/q

max

, which is equivalent to the IW frequency, !, normalized by the buoyancy
frequency N .
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Figure 7. The approximate dimensionless integral K
n

(dashed) compared with exact solutions
J

n

m

n⇤ (solid) over a range of the control parameter m

n

`

y

. The approximation agrees well
in two cases where the assumptions (m2

n⇤ � 1 and `

y

> `

x

) are met (blue and green). The
approximation is very poor when the assumptions are not met (orange and red).

The dashed line is K
n

, and the solid lines are exact solutions J
n

m
n⇤ from (4.13). The

approximation agrees well with the two exact solutions with parameters that satisfy the
assumptions m2

n⇤ � 1 and `
y

> `
x

, and very poorly with cases that do not satisfy these
assumptions.

We see from (4.21) and from figure 7 that the energy flux decreases quickly with
increasing n. This is also clear in figure 6. Therefore, neglecting all but the first mode,
the energy flux becomes

J ⇡ J
1

⇡ �32
p

2⇡5

g3

(Na
max

)4

T 5

(`
x

`
y

)2 K
1

(m
1

`
y

) , (4.22)

where we have replaced the wavenumber k and phase speed c with an expression including
g and the SW period T using the deep water dispersion relation. Using a spectrum of
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waves, Olbers & Eden (2016) recover the same dependence on stratification, SW period
and nearly† the same dependence on SW amplitude. From (4.22) it is clear that the SW
amplitude, stratification, and wave period are the strongest controlling parameters. Thus
even small changes in T , a

max

, or N can drastically change the rate of energy flux from
SWs to IWs.

4.4. Long-crested SWs

An even simpler approximation is obtained if m
n

`
y

is large: as m
n

`
y

! 1 we have

K
n

⇠ 2�1/2⇡�5/2 (d/n`
y

)3. In this case, with long-crested wave groups, (4.21) simplifies
to

J ⇡ � d3

⇡5/2c`
y

(Na
max

)4 (k`
x

)2
1X

n=1

1

n3

| {z }
⇡1.2

, (4.23)

provided m2

n⇤ � 1, `
y

> `
x

, and m
n

`
y

� 1. Note that (4.23) is a very poor approxi-
mation for our assumed typical parameters (m

n

`
y

⇡ 1), but the range of validity of this
approximation is not far from the assumed parameter values. Nevertheless, the m

n

`
y

� 1
approximation is valid for high vertical modes n � 1. This approximation highlights the
weak dependance of the energy flux on the width of the group `

y

and the strong depen-
dence on the depth d.

5. The two-dimensional case

The 2D problem, with no dependence on y, is significantly simpler than the 3D prob-
lem discussed in the previous sections. In 2D the streamfunction-vorticity formulation
provides a compact solution of the second-order wave-averaged equations of motion.
Moreover, strictly in 2D, Lighthill (1978) in section 3.9, and Lamb (1932) in section
249, provide a resolution of the radiation condition that avoids the technicalities of zero
divisors and the ⌘ ! 0 limit in Appendix B. Furthermore, although the 2D case can
be recovered as a special case of our previous 3D results by taking `

y

! 1, the limit
requires evaluation of some singular integrals and is di�cult to extract. Thus in this
section we solve the 2D problem from the beginning and then show how these result can
be recovered from the 3D solution as a special case. This alternative derivation provides
a significant check on the 3D solution.

5.1. Solution of the 2D problem

With no y dependance the IW equation for vertical velocity (2.22) is
⇥
@2

t

�
@2

x

+ @2

z

�
+ N2@2

x

⇤
w̄

2

= 0 . (5.1)

It will be convenient to introduce the stream function  , such that w̄
2

=  
x

, and ū
2

=
� 

z

. Replacing w̄
2

by  and moving into the wave group frame, we have
�
@2

x̃

+ @2

z

+ q2

max

�
 = 0 , (5.2)

† Olbers & Eden (2016) present their results in terms of the wind speed. The energy flux in
their equation (35) varies as wind speed to the seventh power, and they assume a parametrization
in which the wave amplitude is proportional to the wind speed squared. Not included in their
paper is a non-dimensional form of the radiative transfer which recovers the T

�5 dependence as
well (Dirk Olbers 2017, personal communication).
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where recall q
max

= 2N/c. The surface boundary condition in (2.26) is equivalent to
 (x̃, 0) = M(x̃). Then projecting (5.2) onto the sine modes defined in (3.4), we find that
the evolution equation for amplitude of mode n is

⇥
@2

x̃

+ q2

max

�
1 � m2

n⇤
�

| {z }
def

= q

2

min

⇤
 

n

=

p
2m

n

d
M1D , (5.3)

with m2

n⇤ = m
n

/q
max

, and M1D(x̃) is the 1-dimensional Gaussian envelope in (A 4).
In this 2D case we do not need to consider a slowly growing wave group in order to
implement the radiation condition i.e., M1D on the right of (5.3) is not growing.

Notice that (5.3) further elucidates the importance of the critical parameter m
n⇤. In

2D, when m
n⇤ < 1, solutions to (5.3) are propagating waves. This case corresponds to

the singular curves that intersect the q-axis at q = q
min

in figure 4. On the other hand,
if m

n⇤ > 1 then solutions of (5.3) are evanescent i.e., exponentially trapped around the
forcing M1D. This case corresponds to a return flow comprised of the evanescent modes
similar to the unstratified case depicted in figure 1a. Because m

n⇤ / n, in 2D there is a
vertical mode number n

rad

above which m
n⇤ > 1 i.e., modes with n > n

rad

are evanescent
and contribute to the return flow and not to radiation of IWs. If the stratification is weak
(and the stratification of the ocean is weak in this sense) then n

rad

< 1 and all vertical
modes are evanescent. (Whereas in 3D all modes are radiate.)

To solve (5.3) we employ Green’s functions. First consider the radiating modes with
q2

min

> 0. The Green’s function G(x̃) is defined by
�
@2

x̃

+ q2

min

�
G

n

= �(x̃) , (5.4)

with solution

G
n

(x̃) = � sin q
min

x̃

q
min

H(�x̃) , (5.5)

where H(�x̃) is Heaviside step function. The factor H(�x̃) ensures that the solution in
(5.5) satisfies the radiation condition: radiated IWs trail behind (x̃ < 0) the SW forcing.
This choice of Heaviside function is analogous to choosing the sign of � in (3.1). Using
this Green’s function the stream function for radiating modes with 1  n  n

rad

is

 
n

(x̃) = �
p

2m
n

q
min

d

Z 1

x̃

M1D(x0) sin [q
min

(x̃ � x0)] dx0 . (5.6)

Turning to the evanescent modes with q2

min

< 0, we introduce �2

n

= �q2

min

> 0. Then
the relevant solution of (5.4) is

G
n

(x̃) = �e��n

|x̃|

2�
n

, (5.7)

and the stream function for evanescent modes with n > n
rad

is

 
n

(x̃) = �
p

2m
n

2�
n

d

Z 1

�1
M1D(x0)e��n

|x̃�x

0| dx0 . (5.8)

To compute the energy flux, we first consider the solutions in (5.6) and (5.8) far in the
wake of the SW packet i.e., as x̃ ! �1. In the wake, the evanescent modal amplitudes
in (5.8) have decayed to zero and one is left with only the radiating modes with n  n

rad

.
Moreover, the integral in (5.6) is simplified by taking the lower limit to �1 so that

 
n

= �
p

2m
n

q
min

d
=
h
M̂1D(q

min

)eiq

min

x̃

i
, (5.9)
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Figure 8. The flow as in figure 1(b) is used here to illustrate the energy flux calculation
(5.13)-(5.14). The thick rectangle defines a “control box”. The left edge of this box (at x/d ⇡ �4)
is fixed far from the SW group. The right edge of the box moves with the SW group at speed
c/2. Energy from previously generated IWs is carried into the box through the left edge at a
rate E

n

�

n

. Energy also enters the box via a downward flux from the SW group.

where M̂1D(q
min

) is the Fourier transform of M1D(x̃) evaluated at the wavenumber q
min

and = is the imaginary part. Thus in the wake

h 2

n

i = 1

2

 p
2m

n

q
min

d

!
2

|M̂1D(q
min

)|2 , (5.10)

where h i denotes a phase average of the IW i.e., an integral in x̃ over one wavelength
2⇡/q

min

. The potential energy density is b2/N2 = q2

max

 2, so the IW energy density in
the wake of the SW packet is therefore

1

2

Z
0

�d

h 2

x̃

+  2

z

+ q2

max

 2i dz =
n

radX

n=1

E
n

, (5.11)

where the energy density of mode n is

E
n

= 1

2

 p
2m

n

q
min

d

!
2

|M̂1D(q
min

)|2

| {z }
h 2

n

i

q2

max

d . (5.12)

We can relate the energy density of the nth mode to the radiative flux using an
argument given by Lamb (1932) in the context of SW resistance to a moving body.
Figure 8 shows the wake of IWs behind a SW group as in figure 1b. To compute the
energy flux we first consider the total energy inside a box with left edge fixed far from
the SW forcing region, and with the right edge of the box just in front of, and moving
along with, the SW group at speed c/2. The energy in this “control box” for the nth

mode is E
n

L(t), where L(t) is the length of the box. Then the energy flux into this box
can be written as a sum of the energy flux from the SW forcing J2D

n

, and the energy flux
from IWs as they propagate through the left side of the box with their group speed �

n

.
Thus the energy conservation equation for the control box is

@
t

(E
n

L) = J2D

n

+ E
n

�
n

. (5.13)
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Now L = ct/2, where t is the time since the SW group entered the box by passing through
the left edge and so from (5.13) we obtain Lamb’s result

J2D

n

= E
n

�
1

2

c � �
n

�
. (5.14)

The IW group velocity �
n

in (5.14) can be expressed in terms of the IW phase speed
for a radiating wave, c/2, and the critical parameter m

n⇤ as

�
n

=
c

2
m2

n⇤ . (5.15)

Using expression (5.15) for the group velocity �
n

, the radiative flux for the nth vertical
mode given by (5.14) is

J2D

n

=
cm2

n

2d
|M̂1D(q

min

)|2 . (5.16)

In the illustrative case of a Gaussian envelope in (A 4) and (A 5), the radiation flux in
(5.16) is

J2D

n

= �m2

n

2cd

✓p
⇡

2
ga2

max

`
x

◆
2

e�(q

min

`

x

)

2

/2 . (5.17)

5.2. The `
y

! 1 limit of the 3D solution illustrated with a Gaussian wave packet

Throughout this section, we assume that m
n⇤ < 1 so that q

min

in (5.3) is real. This
condition is necessary for the radiation of IW energy: with s = 0 the resonance condition
for vertical mode n is that c/2 is equal to N/

p
q2 + m2

n

, or equivalently that q is equal to
q
min

in (4.9) and figure 4. The results of Chelton et al. (1998) indicate that throughout
Earth’s ocean the SW group speed, c/2, for swell is likely greater than the IW phase
speed N/m

n

for all n. In which case q
min

in (5.3) is imaginary and there is no radiation.
Nonetheless, as a consistency check on the previous 3D calculations, it is interesting to

suppose that q
min

is real and show that the 2D result in (5.17) is recovered by taking the
limit `

y

! 1 in the 3D radiation integral (4.9). The `
y

! 1 limit is tricky e.g, as `
y

!
1, M̂(q, s) / �(s) and a straightforward calculation using (4.9) requires consideration
of |M̂ |2 / �[s

n

(q)]2. The argument of the squared �-function, s
n

(q), is zero at q = q
min

.
But at this same point the big square root in (4.9) has an integrable singularity.

To avoid involvement with these dueling singularities, we first insert |M |2 in (A 3) into
(4.9) and then consider `

y

! 1:
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dq . (5.18)

The factor `
y

left outside the integral in (5.18) is expected on physical grounds: the
radiation should be linearly proportional to the length–in–y of the SW packet.

Now recall that s
n

(q) is defined in (4.10), and observe that s
n

(q
min

) = 0. We can now
simplify the integrand in (5.18) using a standard results for �-functions:

q

s
n

(q)
� [s

n

(q)] =
q

s
n

(q)

�(q � q
min

)

ds
n

/dq
, (5.19)

=
m2

n

q2

min

�(q � q
min

) . (5.20)



Radiation of internal waves 21

Evaluating (5.18) with the �-function in (5.20) we obtain

J
n

=
p
⇡`

y

J2D

n

, (5.21)

where J2D

n

is given by (5.17) and
p
⇡`

y

is the e↵ective length–in–y of the SW packet.

6. Discussion

As SW groups pass over the ocean, water is pumped downward in front of the group,
and lifted in the rear of the group, inducing a deep return flow. This Stokes pumping is
a result of stronger Stokes drift in the center of the group than at the edges, producing
a divergence in the mass flux. Without stratification, this produces the deep return flow
with momentum equal in magnitude but opposite in direction to the momentum of the
shallow Stokes drift. As these wave groups pass over a uniformly stratified ocean, the
isopycnals are set into motion by the return flow, generating a trailing wake of internal
gravity waves.

The pattern of radiated IWs is stationary in the frame of reference of the SW group,
just as ship wake waves are stationary relative to the ship. Because the stratification
in the ocean is relatively weak, there are rarely if ever IWs that propagate with phase
speeds as fast as the group speed of swell (& 6ms�1). Thus radiated IWs must propagate
obliquely to the direction of SW propagation so that the IW phase speed in the SW
direction is much faster than the IW phase speed normal to the wave crests.

The wake angle can be predicted as a function of the vertical mode number, strat-
ification, SW group speed, and ocean depth. The full wake solution shows a wake at
nearly the angle appropriate for a mode one wave. This is consistent with the fact that
most of the radiated energy is put into mode one IWs at frequencies near the buoyancy
frequency.

Using typical parameters for SWs, and ocean stratification, we find that the total
energy transfer from SWs to IWs is insignificant. However, when the SWs have very
large amplitude, and when the stratification is strong, the radiation of IWs may be a
significant source for near-N IWs. Pinkel (1975) observed a near-N spectral peak of
IW energy. The energy content of this peak divided by the energy flux from SWs to
IWs, under extreme forcing, gives a timescale of about one day. This implies that this
forcing mechanism acting over a day would generate IWs at near-N frequencies with the
observed amount of energy. Therefore, although the very large amplitude swell assumed
in this estimate is not present everywhere all of the time, it suggests that SW forcing
may at least contribute to the observed near-N peak in IW energy.

This work was supported by National Science Foundation award OCE-1357047. We
thank Rob Pinkel for helpful discussions. We also thank Dirk Olbers and two anonymous
reviewers for suggestions that improved this work.

Appendix A. A Gaussian envelope

For illustrative purposes we use the Gaussian envelope function

a = a
max

exp

✓
� x̃2

2`2
x

� y2

2`2
y

◆
, (A 1)
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where x̃ is the group coordinate in (2.12). With the envelope in (A 1) the wave momentum
(2.15) is

M(x̃, y) = 1

2

cka2

max

exp

✓
� x̃2

`2
x

� y2

`2
y

◆
. (A 2)

Using the Fourier transform defined in (3.6) we have

M̂(q, s) = 1

2
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2
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2

#
. (A 3)

In the radiation integral for J
n

in (4.9) we have |M̂ |2.
In section 5 we consider the 2D problem with a Gaussian envelope

M1D(x̃) = 1

2
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2

/`

2

x , (A 4)

with Fourier transform

M̂1D(q) = 1
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p
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2

. (A 5)

Appendix B. A �-function limit

The radiation integral in (4.8) has the form

I
def

= lim
⌘!0

ZZ
F (q, s)

1

⇡

⌘

�(q, s)2 + ⌘2

dqds , (B 1)

where the function �(q, s) defined in (3.12) is zero on the “singular curve” C. In the limit
⌘ ! 0, the double integral in (B 1) can be reduced to the single integral

I =

Z

C

F
�
q(`), s(`)

�
��r�

�
q(`), s(`)

��� d` , (B 2)

where ` is arclength along C. (The result above assumes that in (B 1) ⌘ ! 0 through
positive values: the sign is flipped if ⌘ ! 0 through negative values.)

To prove (B 2), note that in terms of intrinsic coordinates (`, n)

dqds = d`dn =
d`d�

|r�| , (B 3)

where n is the normal distance from C. Using (B 3) to convert (B 1) to a (�, `)-integral
and Z 1

�1

1

⇡

⌘

�2 + ⌘2

d� = 1 , (B 4)

to perform the integration over the coordinate �, we obtain (B 2).
Now suppose that C is a graph and can therefore be parameterized as s = f(q). The

element of arclength is

d` =
p

1 + f 02 dq =
|r�|
|�

s

| dq . (B 5)

Thus, using q to parameterize C, the integral in (B 2) becomes

I =

Z
F
�
q, f(q)
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q, s(q)

��� dq . (B 6)
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